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Abstract

In this report we discuss about runtime optimizations in Java Virtual Machines.
We first present some basic framework about Java, virtual machines, JVM and code
optimization. Next, we explain the philosophy behind Java and understand how Java
works, by going through the concepts of bytecode, role of JVM and JIT compiler.
Finally, we delve into the runtime optimizations part, where we explain about hotspots,
inlining, local, global and control flow optimizations.
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1 Introduction

1.1 Java

Java is a general-purpose programming language that is class-based, object-oriented, and
designed to have as few implementation dependencies as possible. It is intended to let appli-
cation developers write once and run anywhere, meaning that compiled Java code can run
on all platforms that support Java without the need for recompilation. Java applications are
typically compiled to bytecode that can run on any Java virtual machine (JVM) regardless
of the underlying computer architecture. [1]

1.2 Virtual Machine

A Virtual Machine (VM) is an emulation of a computer system, where these machines use
computer architectures to provide the functionality of a physical computer. The physical
device on which a virtual machine works is known as the Host, whereas the virtual machine
is known as the Guest.
A single host can have multiple numbers of guests. It is to be noted that the software
within the guest cannot make changes to the software of the host system. The computer
software that creates and runs the virtual machine is known as the Hypervisor. Based on
their functions, there are two different types of virtual machines, about which we discuss
below.

1.2.1 System Virtual Machine

This type of VM provides full virtualization. Acting as the substitute for a real machine,
this type of VM provides functionalities to execute an entire operating system. Hardware
resources are shared and managed, forming multiple environments on the host system. These
environments are isolated from each other but exist on the same physical host. [2]

Figure 1: System Virtual Machine
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1.2.2 Process Virtual Machine

This type of VM is also known as an Application Virtual Machine or a Managed Runtime
Environment. It runs as a normal application inside the host operating system, supporting
a single process. It is created with the starting of the process and is destroyed when the
process ends. It provides a platform-independent programming environment to the process,
allowing it to execute in the same manner as it currently executes on this platform, on any
of the other platforms. [3]

Figure 2: Process Virtual Machine

Process Virtual Machine has become popular with the Java programming language, which
uses a Java Virtual Machine for the execution of its programs, about which we shall study
in the next section 1.3.

1.3 Java Virtual Machine (JVM)

Java Virtual Machine is an abstract machine. It is a specification that provides runtime
environment in which java bytecode can be executed.
To understand the Java Virtual Machine, we must first be aware that one may be talking
about any of the following three different things when one says Java Virtual Machine:

• The abstract specification where working of Java Virtual Machine is specified. But
implementation provider is independent to choose the algorithm.

• A concrete implementation which is known as JRE (Java Runtime Environment).

• A runtime instance of JVM which is created whenever a java command is written
on the command prompt to run a java class.

Thus, each Java application runs inside a runtime instance of some concrete implementation
of the abstract specification of the Java virtual machine.
The Java HotSpot1 Virtual Machine is a core component of the Java SE platform. It im-

1We shall shortly see in section 3.1 about the eponymous behaviour of certain sections of code, from
which the name is derived.
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plements the Java Virtual Machine Specification, and is delivered as a shared library in the
Java Runtime Environment. [4][5]

1.4 Code Optimization

Code optimization is any method of code modification to improve code quality and efficiency.
A program may be optimized so that it becomes smaller in size, consumes less memory,
executes more rapidly, or performs fewer input/output operations. A code optimizing process
must follow the three rules given below:

• The output code must not, in any way, change the meaning of the program

• Optimization should increase the speed of the program and if possible, the program
should demand less number of resources

• Optimization should itself be fast and should not delay the overall compiling process

2 How Java works?

2.1 Java Philosophy

Java has a philosophy called WORA [6], which stands for Write Once, Run Anywhere.
Java tries to achieve platform independence by compiling Java code into an intermediate
format called bytecode, which is expected to be run on any machine equipped with a JVM,
regardless of the underlying computer architecture. In most other programming languages,
their compilers generate code that can execute on a specific target machine.

2.2 Bytecode

The Java source compiler (javac) reads Java source files and compiles them into class files
(see figure 3). As mentioned in section 2.1, unlike many other compilers, like gcc, it does
not produce native code for a given target architecture, but it creates bytecode.
The bytecode is composed of a portable instruction set, where all operation codes are rep-
resented in a single byte. As a result of this, the bytecode is architecture agnostic, but it is
also a lot less performant in itself than the optimized native code.

Figure 3: Compile Time
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2.3 Role of JVM

Bytecode compilation process does not involve much optimization, except for some inlining
(about which we shall discuss in section 3.2 shortly). This means that the bytecode is a lot
similar to the source code and interpreting this bytecode directly is rather slow, which now
opens doors to some good optimization requirements. Early JVM versions did not have any
further optimizations, they worked with the bytecode by interpreting the opcodes directly
(see figure 4). To make things more performant, then came the use of Just-In-Time compiler,
which enables the runtime to execute optimized code.
The JVM takes its time to carefully watch the code as it executes on the virtual machine.
For example it analyses what parts of the code are executed often to decide what part of
it is worth the optimization. It also analyses how the code is executed to decide what
optimizations can be applied.

Figure 4: Run Time

2.4 Just-In-Time (JIT) Compiler

JIT compiler interacts with the JVM at run time and compiles appropriate bytecode se-
quences into native machine code. JIT compilation makes those optimizations possible that
take runtime information and statistics into account. The JIT compiler produces optimized
code tailored to the target architecture that replaces the interpreted version on the fly. Since
compilation happens on a background thread, it does not really interrupt the program exe-
cution.
JIT can lead to performance gains in the excution speeds, if methods in the source code
are executed frequently. Otherwise it is to be noted that the time a JIT compiler takes
to compile the bytecode is added to the overall execution time, and could lead to a higher
execution time than an interpreter for executing the bytecode.
However, JIT can also significantly affect startup time, even if the program eventually
achieves very good peak performance. [7][8]

3 Runtime Optimizations

3.1 Hotspots

In a typical program, there is only a small portion of the code that is executed frequently,
and often, it is this portion of the code that significantly affects the performance of the whole
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program. Such sections of code are called HotSpots. The more the JVM runs a particular
method or a loop, the more information it gathers to make sundry optimizations so that a
faster native code is generated.

1 int sum = 0;

2 for (int i = 0; i <= 1000; i++) {

3 sum += i;

4 }

Code Snippet 1: Since this code runs multiple times, it is a HotSpot

In the above example, a local copy of sum would be stored in a register, specific to a particular
thread. All the operations would be done to the value in the register and when the loop
completes, the value would be written back to the memory. Let us consider another insightful
example below.

1 for (int i = 0; i <= 50; i++) {

2 System.out.println(myobj1.equals(myobj2)); //two objects

3 }

Code Snippet 2: This kind of behavior is only possible when the JVM knows how the code
behaves

In this case, JVM would notice that for each iteration, myobj1 is of class String and hence,
it would generate code corresponding to the .equals() method of the String class directly.
Thus, as no lookups will be required, the compiled code would execute faster. [9]
We now discuss some of the other optimizations made by the JIT compiler during runtime.
[10]

3.2 Inlining

Inlining eliminates the cost of the method calls by substituting a method call with the
body of called method. Bringing related code together enables further optimizations, which
would otherwise have been impossible for separate methods, like Common Subexpression
Elimination2 or Heap Allocation Elimination.

1 public void bar() {

2 int product = foo(2,3);

3 // Do something with product

4 }

5 public static int foo(int a, int b) {

6 return a*b;

7 }

Code Snippet 3: A simple case where inlining will be done

In the above example, method foo will be inlined eventually.

2For more details about Common Subexpression Elimination and other local optimizations, please refer
to the lecture slides of CS 406 Compilers course [11]
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3.3 Local Optimizations

Local optimizations analyze and improve a small section of the code at a time. Many local
optimizations implement tried and tested techniques used in classic static compilers. The
optimizations include:

3.3.1 Register Allocation

Register allocation is the process of assigning variables to registers and managing data trans-
fer in and out of registers. Using intelligent algorithms like a customized version of Linear
Scan Register Allocation is very critical, as a good register allocator can be orders of mag-
nitude better than a bad one. [12]

3.3.2 Algebraic Simplification and Reassociation

Algebraic simplification uses algebraic properties of operators or particular operand combi-
nations to simplify expressions.

• Some statements can be deleted like in below.

1 x = x + 0;

2 x = x * 1;

Code Snippet 4: These statements would eventually be deleted

• Some statements can be simplified.

1 x = x * 0;

2 y = y ** 2;

3 x = x * 8;

4 x = x * 15;

These statements will be simplified as in below.

1 x = 0;

2 y = y * y;

3 x = x << 3;

4 t = x << 4; x = t - x;

Code Snippet 5: Simplified Statements

Reassociation refers to using associativity, commutativity, and distributivity to divide ex-
pressions into parts that are constant, loop invariant and variable.

• Associativity and distributivity can be applied to improve parallelism (reducing the
height of expression trees).
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Figure 5: Tree height reduction

3.3.3 Constant Folding

Constant Folding [13] is a technique where the compiler evaluates constant expressions at
compile time and replaces those expressions with their respective values. Expressions with
constant operands can be evaluated at compile time, thus improving run-time performance
and reducing code size by avoiding evaluation at compile-time. [14]

1 int foo () {

2 return 3 + 5;

3 }

Code Snippet 6: Code fragment before constant folding

In the code fragment below, the expression (3 + 5) can be evaluated at compile time and
replaced with the constant 8. Below is the code fragment after constant folding.

1 int foo () {

2 return 8;

3 }

Code Snippet 7: Code fragment after constant folding

Constant folding is a relatively easy optimization and can be applied after applying other
optimizations that create constant expressions.

3.4 Control Flow Optimizations

Control flow optimizations analyze the flow of control inside a method (or specific sections
of it) and rearrange code paths to improve their efficiency. [15]

3.4.1 Code Motion

Code motion, also called Code Hoisting, unifies sequences of code common to one or more
basic blocks to reduce the code size and potentially avoid expensive re-evaluation. [16]
The most common form of code motion is loop-invariant code motion that moves statements
that evaluate to the same value during every iteration of the loop, to somewhere outside the
loop. [17]
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1 a = 200;

2 while(a>0) {

3 b = x + y;

4 if (a % b == 0}

5 System.out.println(a);

6 }

This code can be further optimized as given below.

1 a = 200;

2 b = x + y;

3 while(a>0) {

4 if (a % b == 0}

5 System.out.println(a);

6 }

Code Snippet 8: Code optimization using Code Motion

3.4.2 Loop Unrolling

Loop unrolling is a loop transformation technique that helps to optimize the execution time of
a program. We basically remove or reduce iterations. Loop unrolling increases the program’s
speed by eliminating loop control instruction and loop test instructions. [18]

1 for (i = 0; i < 100; i++)

2 g ();

Code Snippet 9: Program not using Loop Unrolling

In the code fragment below, the body of the loop can be replicated once and the number of
iterations can be reduced from 100 to 50. Below is the code fragment after loop unrolling.
[19]

1 for (i = 0; i < 100; i += 2) {

2 g ();

3 g ();

4 }

Code Snippet 10: Program after using Loop Unrolling

Advantages:

• Increases program efficiency.

• Reduces loop overhead.

• If statements in a loop are not dependent on each other, they can be executed in
parallel.

Disadvantages:

• Increased program code size, which can be undesirable.

• Increased usage of registers in a single iteration to store temporary variables, which
may reduce performance.
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3.4.3 Exception-Directed Optimization

Exception-Directed Optimization (EDO) [20] optimizes exception-intensive programs with-
out slowing down exception-minimal programs. It is a feedback-directed dynamic optimiza-
tion consisting of three steps:

• Exception Path Profiling: Attempts to detect hot exception paths.

• Exception Path Inlining: Embeds every hot exception path into the corresponding
catching method.

• Throw Elimination: Replaces a throw with a branch to the corresponding handler.

3.5 Global Optimizations

Global Optimizations work on the entire code at once. They can provide a great increase in
performance, but come with the cost of greater compilation time. Hence, they are efficient
as well as expensive. Some of these optimizations are:

3.5.1 Escape Analysis

This is an important technique which Just-In-Time Java compiler can use to analyze the
scope of a new object and decide whether it might not be allocated on Java heap space. This
is a very important performance optimization, because stack allocation and de-allocation are
much faster than heap space allocation. This can be easily applied on objects that are not
visible outside the current method and scope. [21]

1 public String getObjDescription () {

2 Obj car = new Obj();

3 String description = car.generateDescription ();

4 return description;

5 }

Code Snippet 11: A code snippet where the object is neither visible nor accessible outside
getObjDescription() method, hence suitable for optimization

3.5.2 Synchronization Optimizations

Whenever variables are shared between threads, we must use synchronization to ensure that
updates made by one thread are visible to other threads on a timely basis. The Java pro-
gramming language provides synchronization constructs (synchronized methods and blocks)
to permit safe use of concurrently-accessed data structures. These constructs are used per-
vasively in both the standard libraries and the run-time system. In many cases, a large
number of these operations may be safely removed without compromising program seman-
tics, thus improving performance. Removing these operations manually may be inconvenient,
error-prone or even impossible. [22]
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1 public void lockElision () {

2 Obj resource = new Obj();

3 synchronized (resource) {

4 // do something

5 }

6 }

Code Snippet 12: The synchronized section has no real effect, because the lock can only be
accessed by the current thread

3.5.3 Dead Code Elimination

As the name suggests, dead code is the code that is ineffective, i.e., does not contribute to
the outcome of the program. It can be removed without any noticeable behaviour change in
the program, except for performance. The JVM removes all these unnecessary code as part
of this optimization making the implementation much faster.

1 boolean x = true;

2 if (x) {

3 // do something

4 } else {

5 // this is dead code!

6 }

Code Snippet 13: A trivial example of a dead code

It is not an error as it is still syntactically correct, but the compiler does give a warning.
If not removed by the user, it is anyways removed by the compiler for the sake of better
performance.

3.6 Native Code Generation

Native code generation processes vary, depending on the platform architecture. Generally,
during this phase of the compilation, the trees of a method are translated into machine code
instructions. Some small optimizations are performed according to architecture character-
istics. The compiled code is placed into a part of the JVM process space called the code
cache; the location of the method in the code cache is recorded, so that future calls to it
will call the compiled code. This subsequently leads to performance gains in the execution
speed, unless the compiled methods are executed less frequently.
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Summary

Java is a general-purpose programming language that is class-based, object-oriented, and
designed to have as few implementation dependencies as possible. It follows the WORA
philosophy. Each Java application runs inside a runtime instance of some concrete imple-
mentation of the abstract specification of the Java virtual machine. The Java source compiler
reads Java source files and compiles them into class files. JIT compiler interacts with the
JVM at run time and compiles appropriate bytecode sequences into native machine code. JIT
compilation makes those optimizations possible that take runtime information and statistics
into account. These runtime optimizations include inlining; local optimizations like register
allocation, algebraic simplification and reassociation, constant folding; control flow optimiza-
tions like code motion, loop unrolling, exception-directed optimization; global optimizations
like escape analysis, synchronization optimizations and dead code elimination.

Conclusion

This report provided some basic concepts about Java, its philosophy, working principles; dis-
cussed the need for optimization and presented some runtime optimization techniques along
with their brief analysis. As discussed in the report, JIT compiler makes these optimizations
and significantly increases the performance of running applications.
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