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§1 Overview

We will be going through the following two papers in these notes:

• Understanding deep learning requires rethinking generalization 1: Sug-
gests an experiment that makes us rethink classic learning theory

• Uniform convergence may be unable to explain generalization in deep
learning 2: Proposes a learning task where classic learning theory provably fails

These two papers are representative of the line of thought that the current classic learning
theory is not sufficient to explain many mysterious phenomena of deep neural networks,
especially generalization.

§2 Understanding deep learning requires rethinking
generalization

We first introduce some notation for understanding relevant concepts presented in this
paper.

§2.1 Notation for classification tasks

Notation 2.1

Consider the following.

• x ∈ X : input

• y ∈ Y: label

• S = {(x1, y1), . . . , (xm, ym)}: training set

• H: hypothesis class

• A: learning algorithm, a function from S to H

• LS(h) =
1

m

m

∑
i=1
l(h(xi), yi): train loss

• LD(h) = E(x,y)∼D[l(h(x), y)]: test loss

• ∆h = LD(h) −LS(h): generalization error

The question we ask here is: Can we give a bound to ∆h?

Before answering this question, let us first revisit a couple of popular complexity
measures, namely VC Dimension and Rademacher Complexity.

§2.2 Complexity measures and generalization error bound

What are complexity measures? These are measures of how complex a hypothesis class is.
Intuitively, the less complex the measure is, the more generalizing a hypothesis class is.

1Zhang et al., ICLR 2017: https://openreview.net/pdf?id=Sy8gdB9xx
2Nagarajan et al., NeurIPS 2019: https://proceedings.neurips.cc/paper/2019/file/

05e97c207235d63ceb1db43c60db7bbb-Paper.pdf
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Definition 2.2 (VC Dimension) — Denoted by V C(H), it is the maximal size of a
set C ⊂ X that can be shattered by the hypothesis class H. It roughly corresponds
to the number of parameters.

Bound: ∆h ≤
1

δ

√
2V C(H)

m
with probability 1 − δ 3

Definition 2.3 (Rademacher Complexity) — It tells how wrong a hypothesis could
be and is defined as follows.

RC(l ○H,S) ∶=
1

m
Eσ∼{±1}m[ suph∈H

m

∑
i=1
σil(h(xi), yi)]

Bound: ∆h ≤ 2ES∼Dm[RC(l ○H,S)]4

This paper suggests that when it comes to deep neural network (DNN) models, we
need to rethink these complexity measures.

Discussion 2.4

Here are some relevant questions asked on the topic of this subsection:

• Is the VC dimension too high?
It can be infinite in some cases.

• Do we have enough training samples m?
Classic learning theory implicitly expects that m is sufficiently large.

• Is m << number of model parameters?
Yes, that is the common scenario in modern deep learning. In this sense, we
could say deep learning is beyond the scope of what classic learning theory
naturally expects.

We are now ready to go through the randomization test that this paper had conducted.

§2.3 Randomization test

First, the paper reports zero training error and strong generalization achieved by various
models (Inception, AlexNet and MLP) on CIFAR-10 dataset (let us name these models
as being correct). However, they then randomly shuffle the labels of the dataset and
then observe that the models yet again achieve zero training error but now have no
generalization at all (let us call these models as being haywire). This result is surprising
as the models seem to fit both the real and the randomized dataset perfectly. The paper
then uses this experiment to highlight the potential drawbacks of the aforementioned
two complexity measures, as discussed next.

3Theorem 6.11,
4Theorem 26.3 in,
Understanding Machine Learning: From Theory to Algorithms:
https://www.cs.huji.ac.il/~shais/UnderstandingMachineLearning/

understanding-machine-learning-theory-algorithms.pdf
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Discussion 2.5

Here are some relevant questions asked on the topic of this subsection:

• Is the top-5 test accuracy of AlexNet on ImageNet with random
labels really better than chance? It says 0.56 accuracy.
That is a non-significant difference out of randomness. Since the experiments
are randomization tests, one could expect test accuracies to be ∼ 0.5.

§2.4 Failure of classic complexity measures

Firstly, VC dimension cannot distinguish between the correct and haywire models as
they both have the same value of V C(H). To shed more light, let us compute the
bound on generalization error using VC dimension, for the case of AlexNet (∼ 62, 000, 000
parameters) trained on CIFAR-10 dataset (50, 000 training samples), and letting δ = 0.01:

∆h ≤
1

0.01

√
2 × 62,000,000

50,000
= 4979.96

Now coming to Rademacher complexity, recall that it measures how wrong h could be.
Randomization test earlier showed us that h could go horribly wrong, as in the case of
haywire models. To bring more perspective, consider the following result:

RC(l ○H,S) =
1

m
Eσ∼{±1}m[ sup

h∈H

m

∑
i=1

σil(h(xi), yi)] = 1

∆h ≤ 2ES∼Dm[RC(l ○H,S)] = 2 ⋅ 1

Since − 1 ≤ ∆h ≤ 1, this bound is vacuous!

Finally, this paper also comments on the effectiveness of regularization on generalization
as presented next.

§2.5 Role of regularization

In practice, it is common to use regularization for achieving generalization. Some explicit
techniques are data augmentation, weight decay and dropout. However, this paper
suggests that these are neither necessary nor sufficient. Whereas, there are some tricks
that are a commonplace but have implicit regularization effect. Some of these are early
stopping and batch normalization. Further, this paper suggests that there could some
unidentified implicit regularization effects of the training algorithm A itself. In retro-
spect, the last suggestion invoked many research attempts that tried to identify those
unidentified implicit regularization effects of the training algorithm.

To summarize, this was a breakthrough paper which cast light on the fact that the
models can fit both the real dataset and randomized ones, and that the current complexity
measures are incapable of distinguishing these models. It also opened avenues of research
to identify the biases that the training algorithms themselves carry. We next discuss one
such response to this paper.
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Discussion 2.6

Here are some relevant questions asked on the topic of this subsection:

• What does one mean by saying that the regularization techniques
are not sufficient?
Let us clarify what the necessary and sufficient conditions mean in this context.

1. Necessary regularizer:
A model is generalizing Ô⇒ Regularizer R is used

2. Sufficient regularizer:
Regularizer R is used Ô⇒ A model is generalizing

The necessary condition of the presented regularizer is clearly falsified in this
paper because the model is generalizing even if we remove any of the regularizers.
But as is asked, it is unclear to see if the sufficient condition is falsified in this
paper. In their experiments, they do not provide such an experiment where
a model is not generalizing even with one of the regularizers. However, we
imagine it is difficult to falsify the sufficient condition. For example, even if
we use weight decay, it would be easy to construct a bad model by adjusting
other configurations, such as the initial weights, number of epochs and so on.
Therefore, it is reasonable to think that none of the presented regularizers
meets sufficient condition, although we do not feel that the claim in the paper
is well-defined.

• Are training algorithms for deep learning implicitly biased?
Yes. For example, it is now known that stochastic gradient descent has a
bias towards minimum norm solutions and in moderate/ annealing regimes
of learning rates, it converges along the direction of large eigenvalues of the
data matrix whereas gradient descent converges along the directions of small
eigenvalues.

• If the data is simple, does the model return a simple hypothesis,
and if the data is essentially noise, does the model have preference
towards complex hypotheses?

• Are the unidentified implicit regularization effects stated with re-
spect to optimizers such as SGD/ Adam or is this a more general
statement?
In retrospect, we think this is a more general statement. However, in the paper
(refer Section 5) these effects are illustrated with a simple linear model trained
using SGD. Further, recent line of works tried to identify more such effects in
these optimizers.

• When training on random labels, is the model generalizing to some-
thing other than the true distribution?
The answer is No. In their randomization test, the training data and labels
are completely independent. Thus there is zero information to learn from
the training dataset. We also encourage the readers to refer to papers on
behavioral memorization that one of the questioners had pointed out during
this discussion.
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§3 Uniform convergence may be unable to explain
generalization in deep learning

§3.1 Key claim

Let us first define uniform convergence bound.

Definition 3.1 — The uniform convergence bound with respect to loss L is the
smallest value εunif(m,δ) such that:

PS∼Dm[ suph∈H ∣LD(h) − L̂S(h)∣ ≤ εunif(m,δ)] ≥ 1 − δ

Recall that the previous paper suggested to us that, “the entire hypothesis class H is
too big, so we should think about an algorithm-dependent HA, otherwise, we will only
get vacuous bounds.” Now, this paper suggests that, “even if we consider the tightest
possible algorithm-dependent HA, uniform convergence bound still remains vacuous!” It
further states that, “there exists a learning task where A can find a generalizing h, but
the uniform convergence bound is vacuous.”

Let us next formally define what a tightest algorithm-dependent uniform convergence
bound is.

§3.2 Tightest algorithm-dependent uniform convergence bound

Definition 3.2 — The tightest algorithm-dependent uniform convergence bound
with respect to loss L is the smallest value εunif-alg(m,δ) for which there exists a
set of sample sets Sδ such that: PS∼Dm[S ∈ Sδ] ≥ 1 − δ and if we define the space of
hypotheses explored by A on Sδ as Hδ ∶= ⋃S∈Sδ{hS} ⊆H, the following holds:

sup
S∈Sδ

suph∈Hδ ∣LD(h) − L̂S(h)∣ ≤ εunif-alg(m,δ).

In the above definition, sup
S∈Sδ

suph∈Hδ ∣LD(h) − L̂S(h)∣ ≤ εunif-alg(m,δ) is the largest
possible generalization error in Hδ.

Discussion 3.3

Here are some relevant questions asked on the topic of this subsection:

• In the above definition, are we fixing a distribution?
Yes.

• Is there any assumption that the set Sδ or H is closed?
No. The figures in the slides are just for illustration.

• How can one define Sδ in the above manner? Can there not be
multiple such Sδ’s?
This is an existence definition.

We next provide a failure mode of uniform convergence bound as suggested in the
paper.

6
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§3.3 A setup where UC bound provably fails

Notation 3.4

Consider the following setup.

• x ∈ X ∶ x = (x1, x2) where x1 ∈ RK , x2 ∈ RD, K is a small constant and D is
large

• y ∈ Y = {−1,+1}

• Given a fixed vector u such that ∣∣u∣∣2 =
1

√
m

, x1 = 2 ⋅ y ⋅ u, x2 ∼ N(0,
32

D
I)

• h ∈H ∶ w = (w1,w2) ∈ RK+D, hw(x) = w1x1 +w2x2

• A ∶ gradient descent

•

L
(γ)

(y′, y) =

⎧⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎩

1, if yy′ ≤ 0

1 −
yy′

γ
, if yy′ ∈ (0, γ)

0, if yy′ ≥ γ

Discussion 3.5

Here are some relevant questions asked on the topic of this subsection:

• In this setup, if uniform convergence bound fails, does there exist
some other concept which succeeds?
We do not know yet. However, there are some papers which propose stability as
a more fundamental concept (of which uniform convergence bound is a special
case) that could explain generalization even when uniform convergence bound
fails in doing so.

• One would ideally want w2 to be 0. What is the ideal hypothesis in
this setting?
Yes, the ideal hypothesis is w1 = u and w2 = 0.

• Is this setup specific to gradient descent? In other words, does
the main theorem hold even if we use an oracle optimizer that can
always find a solution with zero train error? Related to that, is this
a convex problem?
We are not sure and plan to investigate further. This is not a convex problem
as L(γ)(y′, y) (ramp loss) used is non-convex.

• Did the authors of the paper concoct this loss function to drive their
point through this setup?
We suspect so, but are not fully sure. Again, we plan to investigate a little
further. This could be designed for making the problem solvable by gradient
descent.

• What is the difference between this work and other works which

7
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propose that empirical risk minimizers do not generalize well but
some other concepts such as stability explain better?
This work highlights failure modes of uniform convergence bound based ap-
proaches. However, they do not propose any alternatives to it.

• Is the statement uniform convergence implies generalizability in the
supervised learning setup always true?
For classification and regression settings, yes! But the statement is not true in
general.

• What does one exactly mean when they say that uniform conver-
gence fails?
This means that the bounds given by uniform convergence are vacuous. It
would be more clear once you see the main theorem.

• Is the loss function L(γ)(y′, y) a continuous approximation (surrogate)
for 0 − 1?
Yes, it is robust variation of 0 − 1 loss, often called the ramp loss.

We next state the main theorem of this paper.

§3.4 Main theorem

Theorem 3.6

For any ε, δ > 0, δ ≤ 1/4, when D = Ω(max (m ln
m

δ
,m ln

1

ε
)), γ ∈ [0, 1], the L(γ) loss

satisfies εgen(m,δ) ≤ ε, while εunif-alg(m,δ) ≥ 1 − ε. Furthermore, for all γ ≥ 0, for the
L(γ) loss, εunif-alg(m,δ) ≥ 1 − εgen(m,δ).

In words, it says that

1. Gradient descent can find a generalizing h

2. But the tightest algorithm-dependent uniform convergence bound is vacuous

We now provide a sketch of the proof of the above theorem along with the visual
illustration (Figure 1).

Proof. Consider the following.

• εunif-alg always comes with some Sδ

• But for any Sδ, we can find the following S∗

1. S∗ ∈ Sδ

2. S ′
∗
∈ Sδ, where S ′

∗
= {((x1,−x2), y)∣((x1, x2), y) ∈ S∗}

3. hS∗ has generalization error less than ε

4. hS∗ completely misclassifies S ′
∗

8
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Figure 1: Illustration of the proof outline.

Discussion 3.7

Here are some relevant questions asked on the topic of this subsection:

• How does one prove that stochastic gradient descent finds a solution
that generalizes well?
Out of all models that exactly fit the data, it is known that SGD will often
converge to the solution with minimum norm. However, this notion of minimum
norm is not predictive of generalization performance. So while this minimum-
norm intuition may provide some guidance, it is only a part of the larger
generalization puzzle!

• How does stochastic gradient descent behave when the optimization
has a closed-form solution?
Even if the optimization has a closed-form solution and if the model is over-
parameterized, of the many possible solutions, again, SGD has a preference
towards minimum-norm solutions.

• How does stochastic gradient descent behave in a convex setting?
Can think along similar lines as in the above answer.

We next provide an experiment suggested in the paper to illustrate that uniform conver-
gence bound fails.

9
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Figure 2: An experimental result from the paper that shows uniform convergence fails.
Even though the test error (generalization error) decreases as the training
size gets larger, the performance on S′ stays constant. Since the uniform
convergence bound is at least as loose as the performance on S′, it is vacuous.

§3.5 An experiment where UC bound fails

Notation 3.8

Consider the following experiment.

• H: two-layer ReLU networks (100,000 hidden units)

• A: stochastic gradient descent

• x ∈ X : a 1000-dimensional hypersphere with radius 1 and 1.1

• y ∈ Y: {−1,+1}

• Generate S ′ by flipping the radii

• Notice that S ∼ D and S ′ ∼ D

It is noted here that hS generalizes well but performs poorly on S ′ (Figure 2).

Discussion 3.9

Here are some relevant questions asked on the topic of this subsection:

• Can one always cook-up a dataset S ′ which always exactly challenges
the hypothesis h returned by A?
Yes.

Finally, we summarize the deep learning conjecture presented in the paper.

10
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§3.6 Deep learning conjecture

• Over-parameterized deep networks mainly behave like a very simple (such as a
linear) model and roughly fit the training data

• Plenty of parameters are unused but some of them learn unnecessary knowledge
from training data

• Such unnecessary knowledge does not affect generalization performance, for example,
even if one has knowledge that “the earth is flat”, one can have normal conversations
in 99% of their daily life and yet few people think that they are strange!

• However, one can always find a dataset where such unnecessary knowledge seriously
affects the performance, which establishes a loose uniform convergence bound.

Discussion 3.10

Here are some relevant questions asked on the topic of this subsection:

• Can one interpret unnecessary knowledge as lack of knowledge in
the above context?
Yes and this could be better answered in the talk on Memorization and Learning.

• Is the suggestion made in this paper to consider simple models a
good one?
We believe so! It opened avenues for research into understanding how overpa-
rameterized deep neural networks behave like simpler models and how they
look shallow to gradient descent family of optimizers.

THE END
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