## Direction Matters: On the Implicit Bias of Stochastic Gradient Descent with Moderate Learning Rate Jingfeng Wu et al., ICLR 2021

Presenter: Sai Anuroop Kesanapalli Buddy: Hikaru Ibayashi

CSCI 699: Computational Perspectives on the Frontiers of Machine Learning Spring 2023

University of Southern California


## Table of Contents

(1) Preliminary
(2) The Minimum-Norm Bias of SGD/GD
(3) Directional Bias of SGD/GD: A Toy Example
(4) Directional Bias of SGD/GD: Main Results
(5) References

## Table of Contents

(1) Preliminary

## (2) The Minimum-Norm Bias of SGD/GD

(3) Directional Bias of SGD/GD: A Toy Example
(4) Directional Bias of SGD/GD: Main Results
(5) References

## Preliminary

We introduce some notation here:

- $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a pair of d-dimensional feature vector and 1-dimensional label


## Preliminary

We introduce some notation here:

- $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a pair of d-dimensional feature vector and 1-dimensional label
- Consider a linear regression problem with square loss defined as $I(x, y ; w):=\left(w^{T} x-y\right)^{2}$, where $w \in \mathbb{R}^{d}$ is the model parameter


## Preliminary

We introduce some notation here:

- $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a pair of d-dimensional feature vector and 1-dimensional label
- Consider a linear regression problem with square loss defined as $I(x, y ; w):=\left(w^{\top} x-y\right)^{2}$, where $w \in \mathbb{R}^{d}$ is the model parameter
- Let $\mathcal{D}$ be the population distribution over $(x, y)$


## Preliminary

We introduce some notation here:

- $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a pair of d-dimensional feature vector and 1-dimensional label
- Consider a linear regression problem with square loss defined as $I(x, y ; w):=\left(w^{\top} x-y\right)^{2}$, where $w \in \mathbb{R}^{d}$ is the model parameter
- Let $\mathcal{D}$ be the population distribution over $(x, y)$
- Test loss, $L_{\mathcal{D}}(w):=\mathbb{E}_{(x, y) \sim \mathcal{D}}[/(x, y ; w)]$


## Preliminary

We introduce some notation here:

- $(x, y) \in \mathbb{R}^{d} \times \mathbb{R}$ be a pair of d-dimensional feature vector and 1-dimensional label
- Consider a linear regression problem with square loss defined as $I(x, y ; w):=\left(w^{T} x-y\right)^{2}$, where $w \in \mathbb{R}^{d}$ is the model parameter
- Let $\mathcal{D}$ be the population distribution over $(x, y)$
- Test loss, $L_{\mathcal{D}}(w):=\mathbb{E}_{(x, y) \sim \mathcal{D}}[/(x, y ; w)]$
- Training/ empirical loss, $L_{\mathcal{S}}(w):=\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}$, where $\mathcal{S}:=\left\{\left(x_{i}, y_{i}\right)\right\}_{i=1}^{n}$ is a training set of $n$ data points drawn i.i.d. from the population distribution $\mathcal{D}$


## Preliminary

## Gradient Descent (GD):

- $w_{k+1}=w_{k}-\eta_{k} \nabla L_{\mathcal{S}}\left(w_{k}\right)=w_{k}-\frac{2 \eta_{k}}{n} \sum_{i=1}^{n} x_{i}\left(x_{i}^{T} w_{k}-y_{i}\right)$


## Preliminary

Gradient Descent (GD):

- $w_{k+1}=w_{k}-\eta_{k} \nabla L_{\mathcal{S}}\left(w_{k}\right)=w_{k}-\frac{2 \eta_{k}}{n} \sum_{i=1}^{n} x_{i}\left(x_{i}^{T} w_{k}-y_{i}\right)$

Mini-Batch Stochastic Gradient Descent (SGD):

- $w_{k, j+1}=w_{k, j}-\frac{\eta_{k}}{b} \sum_{i \in \mathcal{B}_{j}^{k}} \nabla l_{i}\left(w_{k, j}\right)=w_{k, j}-\frac{2 \eta_{k}}{b} \sum_{i \in \mathcal{B}_{j}^{k}} x_{i}\left(x_{i}^{T} w_{k, j}-y_{i}\right)$,
$j=1, \ldots, m$ batches
- Note that $j$ indexes batches and $k$ indexes epochs


## Preliminary

Condition Number of a matrix $A$ :

- $\kappa(A)=\frac{\sigma_{\max }(A)}{\sigma_{\min }(A)}$, measures the ratio of the maximum relative stretching to the maximum relative shrinking that matrix does to any non-zero vectors


## Preliminary

Condition Number of a matrix $A$ :

- $\kappa(A)=\frac{\sigma_{\max }(A)}{\sigma_{\min }(A)}$, measures the ratio of the maximum relative stretching to the maximum relative shrinking that matrix does to any non-zero vectors
- If $D=\operatorname{Diag}\left(d_{i}\right)$ is a diagonal matrix, then $\kappa(D)=\frac{\max \left(d_{i}\right)}{\min \left(d_{i}\right)}$


## Preliminary

Condition Number of a matrix $A$ :

- $\kappa(A)=\frac{\sigma_{\max }(A)}{\sigma_{\min }(A)}$, measures the ratio of the maximum relative stretching to the maximum relative shrinking that matrix does to any non-zero vectors
- If $D=\operatorname{Diag}\left(d_{i}\right)$ is a diagonal matrix, then $\kappa(D)=\frac{\max \left(d_{i}\right)}{\min \left(d_{i}\right)}$
- A "problem" with a low condition number is said to be well-conditioned, while a problem with a high condition number is said to be ill-conditioned


## Preliminary

## Projection operator $P$ :

- A projection on a vector space $V$ is a linear operator $P: V \rightarrow V$ such that $P^{2}=P$


## Preliminary

Projection operator $P$ :

- A projection on a vector space $V$ is a linear operator $P: V \rightarrow V$ such that $P^{2}=P$
- For example, $P=\left[\begin{array}{lll}1 & 0 & 0 \\ 0 & 1 & 0 \\ 0 & 0 & 0\end{array}\right]$ projects a point $(x, y, z) \in \mathbb{R}^{3}$ to its image on the $x-y$ plane, i.e., $(x, y, 0) \in \mathbb{R}^{3}$


## Preliminary

Column space of a matrix $A$ :

- Let $K$ be a field of scalars. Let $A$ be an $m \times n$ matrix, with column vectors $v_{1}, \ldots, v_{n}$


## Preliminary

Column space of a matrix $A$ :

- Let $K$ be a field of scalars. Let $A$ be an $m \times n$ matrix, with column vectors $v_{1}, \ldots, v_{n}$
- A linear combination of these vectors is any vector of the form $c_{1} v_{1}+\cdots+c_{n} v_{n}$, where $c_{1}, \ldots, c_{n}$ are scalars


## Preliminary

Column space of a matrix $A$ :

- Let $K$ be a field of scalars. Let $A$ be an $m \times n$ matrix, with column vectors $v_{1}, \ldots, v_{n}$
- A linear combination of these vectors is any vector of the form $c_{1} v_{1}+\cdots+c_{n} v_{n}$, where $c_{1}, \ldots, c_{n}$ are scalars
- The set of all possible linear combinations of $v_{1}, \ldots, v_{n}$ is called the column space of $A$


## Preliminary

Column space of a matrix $A$ :

- Let $K$ be a field of scalars. Let $A$ be an $m \times n$ matrix, with column vectors $v_{1}, \ldots, v_{n}$
- A linear combination of these vectors is any vector of the form $c_{1} v_{1}+\cdots+c_{n} v_{n}$, where $c_{1}, \ldots, c_{n}$ are scalars
- The set of all possible linear combinations of $v_{1}, \ldots, v_{n}$ is called the column space of $A$
- Any linear combination of the column vectors of a matrix $A$ can be written as the product of $A$ with a column vector:

$$
A\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=c_{1}\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{m 1}
\end{array}\right]+\cdots+c_{n}\left[\begin{array}{c}
a_{1 n} \\
\vdots \\
a_{m n}
\end{array}\right]=c_{1} v_{1}+\cdots+c_{n} v_{n}
$$

## Preliminary

Column space of a matrix $A$ :

- Let $K$ be a field of scalars. Let $A$ be an $m \times n$ matrix, with column vectors $v_{1}, \ldots, v_{n}$
- A linear combination of these vectors is any vector of the form $c_{1} v_{1}+\cdots+c_{n} v_{n}$, where $c_{1}, \ldots, c_{n}$ are scalars
- The set of all possible linear combinations of $v_{1}, \ldots, v_{n}$ is called the column space of $A$
- Any linear combination of the column vectors of a matrix $A$ can be written as the product of $A$ with a column vector:

$$
A\left[\begin{array}{c}
c_{1} \\
\vdots \\
c_{n}
\end{array}\right]=c_{1}\left[\begin{array}{c}
a_{11} \\
\vdots \\
a_{m 1}
\end{array}\right]+\cdots+c_{n}\left[\begin{array}{c}
a_{1 n} \\
\vdots \\
a_{m n}
\end{array}\right]=c_{1} v_{1}+\cdots+c_{n} v_{n}
$$

- Therefore, the column space of $A$ consists of all possible products $A x$, for $x \in K^{n}$


## Preliminary

Lipschitz continuous gradient:

- Let $f$ be a twice differentiable convex function


## Preliminary

Lipschitz continuous gradient:

- Let $f$ be a twice differentiable convex function
- Then $f$ has a Lipschitz continuous gradient if there exists an $L$ such that $\nabla^{2} f \preccurlyeq L I$


## Preliminary

Lipschitz continuous gradient:

- Let $f$ be a twice differentiable convex function
- Then $f$ has a Lipschitz continuous gradient if there exists an $L$ such that $\nabla^{2} f \preccurlyeq L I$
- In other words, the largest eigenvalue of the Hessian of $f$ is uniformly upper bounded by $L$ everywhere


## Table of Contents

(1) Preliminary
(2) The Minimum-Norm Bias of SGD/GD
(3) Directional Bias of SGD/GD: A Toy Example
(4) Directional Bias of SGD/GD: Main Results
(5) References

## The Minimum-Norm Bias of SGD/ GD

We consider the case of SGD/ GD optimizing linear regression problem:

- Rewrite training loss as $L_{\mathcal{S}}(w)=\frac{1}{n}\left\|X^{T} w-Y\right\|_{2}^{2}$, where $X \in \mathbb{R}^{d \times n}$ and $Y \in \mathbb{R}^{n}$


## The Minimum-Norm Bias of SGD/ GD

We consider the case of SGD/ GD optimizing linear regression problem:

- Rewrite training loss as $L_{\mathcal{S}}(w)=\frac{1}{n}\left\|X^{T} w-Y\right\|_{2}^{2}$, where $X \in \mathbb{R}^{d \times n}$ and $Y \in \mathbb{R}^{n}$
- Then its global minima are given by $\mathcal{W}_{*}:=\left\{w \in \mathbb{R}^{d}: P w=w_{*}, w_{*}:=X\left(X^{\top} X\right)^{-1} Y\right\}$, where $P$ is the projection operator onto the column space of $X$


## The Minimum-Norm Bias of SGD/ GD

We consider the case of SGD/ GD optimizing linear regression problem:

- Rewrite training loss as $L_{\mathcal{S}}(w)=\frac{1}{n}\left\|X^{T} w-Y\right\|_{2}^{2}$, where $X \in \mathbb{R}^{d \times n}$ and $Y \in \mathbb{R}^{n}$
- Then its global minima are given by $\mathcal{W}_{*}:=\left\{w \in \mathbb{R}^{d}: P w=w_{*}, w_{*}:=X\left(X^{\top} X\right)^{-1} Y\right\}$, where $P$ is the projection operator onto the column space of $X$


## The Minimum-Norm Bias of SGD/ GD

We consider the case of SGD/ GD optimizing linear regression problem:

- Rewrite training loss as $L_{\mathcal{S}}(w)=\frac{1}{n}\left\|X^{T} w-Y\right\|_{2}^{2}$, where $X \in \mathbb{R}^{d \times n}$ and $Y \in \mathbb{R}^{n}$
- Then its global minima are given by $\mathcal{W}_{*}:=\left\{w \in \mathbb{R}^{d}: P w=w_{*}, w_{*}:=X\left(X^{\top} X\right)^{-1} Y\right\}$, where $P$ is the projection operator onto the column space of $X$
- We focus on overparameterized cases where $\mathcal{W}_{*}$ is not a singleton


## The Minimum-Norm Bias of SGD/GD

- Notice that every gradient $\nabla I_{i}(w)=2 x_{i}\left(x_{i}^{T} w-y_{i}\right)$ is spanned in the column space of the data manifold


## The Minimum-Norm Bias of SGD/ GD

- Notice that every gradient $\nabla I_{i}(w)=2 x_{i}\left(x_{i}^{T} w-y_{i}\right)$ is spanned in the column space of the data manifold
- Thus, GD and SGD can never move along the direction that is orthogonal to the data manifold


## The Minimum-Norm Bias of SGD/ GD

- Notice that every gradient $\nabla I_{i}(w)=2 x_{i}\left(x_{i}^{\top} w-y_{i}\right)$ is spanned in the column space of the data manifold
- Thus, GD and SGD can never move along the direction that is orthogonal to the data manifold
- This means they implicitly admit the following hypothesis class:

$$
\mathcal{H}_{\mathcal{S}}=\left\{w \in \mathbb{R}^{d}: P_{\perp} w=P_{\perp} w_{0}\right\}
$$

where $w_{0}$ is the initializtion and $P_{\perp}=I-P$ is the projection operator onto the orthogonal complement to the column space of $X$

## The Minimum-Norm Bias of SGD/ GD

For any global optimum $w \in W_{*}$, i.e., $P w=w_{*}$, consider the following:

## The Minimum-Norm Bias of SGD/ GD

For any global optimum $w \in W_{*}$, i.e., $P w=w_{*}$, consider the following:

$$
w-w_{0}=\left(P+P_{\perp}\right)\left(w-w_{0}\right) \Longleftrightarrow\left\|w-w_{0}\right\|_{2}^{2}=\left\|\left(P+P_{\perp}\right)\left(w-w_{0}\right)\right\|_{2}^{2}
$$

## The Minimum-Norm Bias of SGD/ GD

For any global optimum $w \in W_{*}$, i.e., $P w=w_{*}$, consider the following:

$$
\begin{aligned}
w & -w_{0}=\left(P+P_{\perp}\right)\left(w-w_{0}\right) \Longleftrightarrow\left\|w-w_{0}\right\|_{2}^{2}=\left\|\left(P+P_{\perp}\right)\left(w-w_{0}\right)\right\|_{2}^{2} \\
& \left.=\| P w-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\} \|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}+2\left(w_{*}-P w_{0}\right)^{T}\left(P_{\perp}\left(w-w_{0}\right)\right)
\end{aligned}
$$

## The Minimum-Norm Bias of SGD/GD

For any global optimum $w \in W_{*}$, i.e., $P w=w_{*}$, consider the following:

$$
\begin{aligned}
w- & w_{0}=\left(P+P_{\perp}\right)\left(w-w_{0}\right) \Longleftrightarrow\left\|w-w_{0}\right\|_{2}^{2}=\left\|\left(P+P_{\perp}\right)\left(w-w_{0}\right)\right\|_{2}^{2} \\
& \left.=\| P w-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\} \|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}+2\left(w_{*}-P w_{0}\right)^{T}\left(P_{\perp}\left(w-w_{0}\right)\right) \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}+2\left(w-w_{0}\right)^{T} P^{T} P_{\perp}\left(w-w_{0}\right)
\end{aligned}
$$

## The Minimum-Norm Bias of SGD/GD

For any global optimum $w \in W_{*}$, i.e., $P w=w_{*}$, consider the following:

$$
\begin{aligned}
w- & w_{0}=\left(P+P_{\perp}\right)\left(w-w_{0}\right) \Longleftrightarrow\left\|w-w_{0}\right\|_{2}^{2}=\left\|\left(P+P_{\perp}\right)\left(w-w_{0}\right)\right\|_{2}^{2} \\
& \left.=\| P w-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\} \|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}+2\left(w_{*}-P w_{0}\right)^{T}\left(P_{\perp}\left(w-w_{0}\right)\right) \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}+2\left(w-w_{0}\right)^{T} P^{T} P_{\perp}\left(w-w_{0}\right)
\end{aligned}
$$

## The Minimum-Norm Bias of SGD/GD

For any global optimum $w \in W_{*}$, i.e., $P w=w_{*}$, consider the following:

$$
\begin{aligned}
w & -w_{0}=\left(P+P_{\perp}\right)\left(w-w_{0}\right) \Longleftrightarrow\left\|w-w_{0}\right\|_{2}^{2}=\left\|\left(P+P_{\perp}\right)\left(w-w_{0}\right)\right\|_{2}^{2} \\
& \left.=\| P w-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\} \|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}+2\left(w_{*}-P w_{0}\right)^{T}\left(P_{\perp}\left(w-w_{0}\right)\right) \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}+2\left(w-w_{0}\right)^{T} P^{T} P_{\perp}\left(w-w_{0}\right) \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}
\end{aligned}
$$

## The Minimum-Norm Bias of SGD/GD

For any global optimum $w \in W_{*}$, i.e., $P w=w_{*}$, consider the following:

$$
\begin{aligned}
w & -w_{0}=\left(P+P_{\perp}\right)\left(w-w_{0}\right) \Longleftrightarrow\left\|w-w_{0}\right\|_{2}^{2}=\left\|\left(P+P_{\perp}\right)\left(w-w_{0}\right)\right\|_{2}^{2} \\
& \left.=\| P w-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\} \|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}+P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2} \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}+2\left(w_{*}-P w_{0}\right)^{T}\left(P_{\perp}\left(w-w_{0}\right)\right) \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}+2\left(w-w_{0}\right)^{T} P^{T} P_{\perp}\left(w-w_{0}\right) \\
& =\left\|w_{*}-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}
\end{aligned}
$$

- Note here that $\left\|w-P w_{0}\right\|_{2}^{2}+\left\|P_{\perp}\left(w-w_{0}\right)\right\|_{2}^{2}$ is minimized when $P_{\perp} w=P_{\perp} w_{0}$, i.e., $w \in \mathcal{H}_{\mathcal{S}}$.


## The Minimum-Norm Bias of SGD/ GD

- Thus $w$ is the solution found by SGD/GD when the learning rate is set properly so that the algorithms can find a global optimum


## The Minimum-Norm Bias of SGD/ GD

- Thus $w$ is the solution found by SGD/GD when the learning rate is set properly so that the algorithms can find a global optimum
- Since initialization is usually set to zero, SGD/GD is biased to find the global optimum that is closest to the initialization, which is referred as the "minimum-norm" bias in literature


## Table of Contents

(1) Preliminary
(2) The Minimum-Norm Bias of SGD/GD
(3) Directional Bias of SGD/ GD: A Toy Example
(4) Directional Bias of SGD/GD: Main Results
(5) References

## Directional Bias of SGD/ GD: A Toy Example

We now conduct a 2-dimensional case study to motivate the directional bias of SGD in the moderate learning rate regime

- Consider a training set consisting of just two orthogonal points,

$$
\mathcal{S}=\left\{\left(x_{1}=\left[\begin{array}{c}
\sqrt{\kappa} \\
0
\end{array}\right], y_{1}=0\right),\left(x_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], y_{2}=0\right)\right\}, \kappa>2
$$

## Directional Bias of SGD/ GD: A Toy Example

We now conduct a 2-dimensional case study to motivate the directional bias of SGD in the moderate learning rate regime

- Consider a training set consisting of just two orthogonal points,

$$
\mathcal{S}=\left\{\left(x_{1}=\left[\begin{array}{c}
\sqrt{\kappa} \\
0
\end{array}\right], y_{1}=0\right),\left(x_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], y_{2}=0\right)\right\}, \kappa>2
$$

- Let $w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$


## Directional Bias of SGD/ GD: A Toy Example

We now conduct a 2-dimensional case study to motivate the directional bias of SGD in the moderate learning rate regime

- Consider a training set consisting of just two orthogonal points,

$$
\mathcal{S}=\left\{\left(x_{1}=\left[\begin{array}{c}
\sqrt{\kappa} \\
0
\end{array}\right], y_{1}=0\right),\left(x_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], y_{2}=0\right)\right\}, \kappa>2
$$

- Let $w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$
- $L_{\mathcal{S}}(w)=\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}=\frac{1}{2}\left(l_{1}(w)+l_{2}(w)\right)=\frac{1}{2}\left(w_{1}^{2} \kappa+w_{2}^{2}\right)$


## Directional Bias of SGD/ GD: A Toy Example

We now conduct a 2-dimensional case study to motivate the directional bias of SGD in the moderate learning rate regime

- Consider a training set consisting of just two orthogonal points,

$$
\mathcal{S}=\left\{\left(x_{1}=\left[\begin{array}{c}
\sqrt{\kappa} \\
0
\end{array}\right], y_{1}=0\right),\left(x_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], y_{2}=0\right)\right\}, \kappa>2
$$

- Let $w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$
- $L_{\mathcal{S}}(w)=\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}=\frac{1}{2}\left(l_{1}(w)+l_{2}(w)\right)=\frac{1}{2}\left(w_{1}^{2} \kappa+w_{2}^{2}\right)$
- $\nabla L_{\mathcal{S}}(w)=0 \Longleftrightarrow\left[\begin{array}{c}w_{1} \kappa \\ w_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$


## Directional Bias of SGD/ GD: A Toy Example

We now conduct a 2-dimensional case study to motivate the directional bias of SGD in the moderate learning rate regime

- Consider a training set consisting of just two orthogonal points,

$$
\mathcal{S}=\left\{\left(x_{1}=\left[\begin{array}{c}
\sqrt{\kappa} \\
0
\end{array}\right], y_{1}=0\right),\left(x_{2}=\left[\begin{array}{l}
0 \\
1
\end{array}\right], y_{2}=0\right)\right\}, \kappa>2
$$

- Let $w=\left[\begin{array}{l}w_{1} \\ w_{2}\end{array}\right]$
- $L_{\mathcal{S}}(w)=\frac{1}{n} \sum_{i=1}^{n}\left(w^{T} x_{i}-y_{i}\right)^{2}=\frac{1}{2}\left(l_{1}(w)+l_{2}(w)\right)=\frac{1}{2}\left(w_{1}^{2} \kappa+w_{2}^{2}\right)$
- $\nabla L_{\mathcal{S}}(w)=0 \Longleftrightarrow\left[\begin{array}{c}w_{1} \kappa \\ w_{2}\end{array}\right]=\left[\begin{array}{l}0 \\ 0\end{array}\right]$
- So $w_{*}=0$ is the unique minimum of $L_{\mathcal{S}}(w)$


## Directional Bias of SGD/ GD: A Toy Example

Further,

- $\nabla^{2} L_{\mathcal{S}}(w)=\left[\begin{array}{ll}\kappa & 0 \\ 0 & 1\end{array}\right] \Longrightarrow L_{\mathcal{S}}(w)$ is $\kappa$-smooth


## Directional Bias of SGD/ GD: A Toy Example

Further,

- $\nabla^{2} L_{\mathcal{S}}(w)=\left[\begin{array}{ll}\kappa & 0 \\ 0 & 1\end{array}\right] \Longrightarrow L_{\mathcal{S}}(w)$ is $\kappa$-smooth


## Directional Bias of SGD/ GD: A Toy Example

Further,

- $\nabla^{2} L_{\mathcal{S}}(w)=\left[\begin{array}{ll}\kappa & 0 \\ 0 & 1\end{array}\right] \Longrightarrow L_{\mathcal{S}}(w)$ is $\kappa$-smooth
- $\nabla^{2} I_{1}(w)=\left[\begin{array}{cc}2 \kappa & 0 \\ 0 & 0\end{array}\right] \Longrightarrow I_{1}(w)$ is $2 \kappa$-smooth


## Directional Bias of SGD/ GD: A Toy Example

Further,

- $\nabla^{2} L_{\mathcal{S}}(w)=\left[\begin{array}{ll}\kappa & 0 \\ 0 & 1\end{array}\right] \Longrightarrow L_{\mathcal{S}}(w)$ is $\kappa$-smooth
- $\nabla^{2} I_{1}(w)=\left[\begin{array}{cc}2 \kappa & 0 \\ 0 & 0\end{array}\right] \Longrightarrow I_{1}(w)$ is $2 \kappa$-smooth
- $\nabla^{2} I_{2}(w)=\left[\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right] \Longrightarrow I_{2}(w)$ is 2-smooth


## Directional Bias of SGD/ GD: A Toy Example

Further,

- $\nabla^{2} L_{\mathcal{S}}(w)=\left[\begin{array}{ll}\kappa & 0 \\ 0 & 1\end{array}\right] \Longrightarrow L_{\mathcal{S}}(w)$ is $\kappa$-smooth
- $\nabla^{2} I_{1}(w)=\left[\begin{array}{cc}2 \kappa & 0 \\ 0 & 0\end{array}\right] \Longrightarrow I_{1}(w)$ is $2 \kappa$-smooth
- $\nabla^{2} I_{2}(w)=\left[\begin{array}{ll}0 & 0 \\ 0 & 2\end{array}\right] \Longrightarrow I_{2}(w)$ is 2-smooth
- Thus $I_{2}(w)$ is 2 -smooth, but $I_{1}(w)$, the individual loss for data $x_{1}$, is only $2 \kappa$-smooth, which is more ill-conditioned compared to $L_{\mathcal{S}}(w)$ and $I_{2}(w)$


## Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting with GD, recall that the update step is $w_{k}=w_{k-1}-\eta \nabla L_{\mathcal{S}}\left(w_{k-1}\right)$

$$
=w_{k-1}-\eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right]
$$

## Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting with GD, recall that the update step is $w_{k}=w_{k-1}-\eta \nabla L_{\mathcal{S}}\left(w_{k-1}\right)$

$$
\begin{aligned}
& =w_{k-1}-\eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right] \\
& =w_{k-1}-\eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1}
\end{aligned}
$$

## Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting with GD, recall that the update step is $w_{k}=w_{k-1}-\eta \nabla L_{\mathcal{S}}\left(w_{k-1}\right)$

$$
\begin{aligned}
& =w_{k-1}-\eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right] \\
& =w_{k-1}-\eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
1-\eta \kappa & 0 \\
0 & 1-\eta
\end{array}\right] w_{k-1}
\end{aligned}
$$

## Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting with GD, recall that the update step is $w_{k}=w_{k-1}-\eta \nabla L_{\mathcal{S}}\left(w_{k-1}\right)$

$$
\begin{aligned}
& =w_{k-1}-\eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right] \\
& =w_{k-1}-\eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
1-\eta \kappa & 0 \\
0 & 1-\eta
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
(1-\eta \kappa)^{k} & 0 \\
0 & (1-\eta)^{k}
\end{array}\right] w_{0}
\end{aligned}
$$

## Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting with GD, recall that the update step is $w_{k}=w_{k-1}-\eta \nabla L_{\mathcal{S}}\left(w_{k-1}\right)$

$$
=w_{k-1}-\eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right]
$$

$$
=w_{k-1}-\eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1}
$$

$$
=\left[\begin{array}{cc}
1-\eta \kappa & 0 \\
0 & 1-\eta
\end{array}\right] w_{k-1}
$$

$$
=\left[\begin{array}{cc}
(1-\eta \kappa)^{k} & 0 \\
0 & (1-\eta)^{k}
\end{array}\right] w_{0}
$$

So we have that $w_{k}^{g d}=\left[\begin{array}{cc}(1-\eta \kappa)^{k} & 0 \\ 0 & (1-\eta)^{k}\end{array}\right] w_{0}$

## Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting with GD, recall that the update step is $w_{k}=w_{k-1}-\eta \nabla L_{\mathcal{S}}\left(w_{k-1}\right)$

$$
=w_{k-1}-\eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right]
$$

$$
=w_{k-1}-\eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1}
$$

$$
=\left[\begin{array}{cc}
1-\eta \kappa & 0 \\
0 & 1-\eta
\end{array}\right] w_{k-1}
$$

$$
=\left[\begin{array}{cc}
(1-\eta \kappa)^{k} & 0 \\
0 & (1-\eta)^{k}
\end{array}\right] w_{0}
$$

So we have that $w_{k}^{g d}=\left[\begin{array}{cc}(1-\eta \kappa)^{k} & 0 \\ 0 & (1-\eta)^{k}\end{array}\right] w_{0}$
For $\eta \in\left(\frac{1}{\kappa}, \frac{2}{1+\kappa}\right),|1-\eta \kappa|<|1-\eta|<1$

## Directional Bias of SGD/ GD: A Toy Example

- With moderate learning rate GD is convergent for both directions $e_{1}$ and $e_{2}$


## Directional Bias of SGD/ GD: A Toy Example

- With moderate learning rate GD is convergent for both directions $e_{1}$ and $e_{2}$
- GD fits $e_{1}$ faster since the contraction parameter is smaller, i.e., $|1-\eta \kappa|<|1-\eta|<1$


## Directional Bias of SGD/ GD: A Toy Example

- With moderate learning rate GD is convergent for both directions $e_{1}$ and $e_{2}$
- GD fits $e_{1}$ faster since the contraction parameter is smaller, i.e., $|1-\eta \kappa|<|1-\eta|<1$
- Thus observing the entire optimization path, GD approaches the minimum $w_{*}=0$ along $e_{2}$, which corresponds to the smaller eigenvalue direction of $\nabla^{2} L_{\mathcal{S}}(w)$


## Directional Bias of SGD/ GD: A Toy Example

- With moderate learning rate GD is convergent for both directions $e_{1}$ and $e_{2}$
- GD fits $e_{1}$ faster since the contraction parameter is smaller, i.e., $|1-\eta \kappa|<|1-\eta|<1$
- Thus observing the entire optimization path, GD approaches the minimum $w_{*}=0$ along $e_{2}$, which corresponds to the smaller eigenvalue direction of $\nabla^{2} L_{\mathcal{S}}(w)$
- We note this directional bias for GD also holds in the small learning rate regime


## Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

$$
\begin{gathered}
w_{k, j+1}=w_{k-1, j}-\frac{\eta}{b} \sum_{i \in \mathcal{B}_{j}^{k}} \nabla l_{i}\left(w_{k-1, j}\right) \\
=w_{k-1}-2 \eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right]
\end{gathered}
$$

## Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

$$
\begin{aligned}
w_{k, j+1} & =w_{k-1, j}-\frac{\eta}{b} \sum_{i \in \mathcal{B}_{j}^{k}} \nabla l_{i}\left(w_{k-1, j}\right) \\
& =w_{k-1}-2 \eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right] \\
& =w_{k-1}-2 \eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1}
\end{aligned}
$$

## Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

$$
\begin{aligned}
w_{k, j+1} & =w_{k-1, j}-\frac{\eta}{b} \sum_{i \in \mathcal{B}_{j}^{k}} \nabla I_{i}\left(w_{k-1, j}\right) \\
& =w_{k-1}-2 \eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right] \\
& =w_{k-1}-2 \eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
1-2 \eta \kappa & 0 \\
0 & 1-2 \eta
\end{array}\right] w_{k-1}
\end{aligned}
$$

## Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

$$
\begin{aligned}
w_{k, j+1} & =w_{k-1, j}-\frac{\eta}{b} \sum_{i \in \mathcal{B}_{j}^{k}} \nabla I_{i}\left(w_{k-1, j}\right) \\
& =w_{k-1}-2 \eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right] \\
& =w_{k-1}-2 \eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
1-2 \eta \kappa & 0 \\
0 & 1-2 \eta
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
(1-2 \eta \kappa)^{k} & 0 \\
0 & (1-2 \eta)^{k}
\end{array}\right] w_{0}
\end{aligned}
$$

## Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

$$
\begin{aligned}
w_{k, j+1} & =w_{k-1, j}-\frac{\eta}{b} \sum_{i \in \mathcal{B}_{j}^{k}} \nabla l_{i}\left(w_{k-1, j}\right) \\
& =w_{k-1}-2 \eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right] \\
& =w_{k-1}-2 \eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
1-2 \eta \kappa & 0 \\
0 & 1-2 \eta
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
(1-2 \eta \kappa)^{k} & 0 \\
0 & (1-2 \eta)^{k}
\end{array}\right] w_{0}
\end{aligned}
$$

So we have that $w_{k}^{\text {sgd }}=\left[\begin{array}{cc}(1-2 \eta \kappa)^{k} & 0 \\ 0 & (1-2 \eta)^{k}\end{array}\right] w_{0}$

## Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

$$
\begin{aligned}
w_{k, j+1} & =w_{k-1, j}-\frac{\eta}{b} \sum_{i \in \mathcal{B}_{j}^{k}} \nabla l_{i}\left(w_{k-1, j}\right) \\
& =w_{k-1}-2 \eta\left[\begin{array}{c}
w_{k-1,1} \kappa \\
w_{k-1,2}
\end{array}\right] \\
& =w_{k-1}-2 \eta\left[\begin{array}{cc}
\kappa & 0 \\
0 & 1
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
1-2 \eta \kappa & 0 \\
0 & 1-2 \eta
\end{array}\right] w_{k-1} \\
& =\left[\begin{array}{cc}
(1-2 \eta \kappa)^{k} & 0 \\
0 & (1-2 \eta)^{k}
\end{array}\right] w_{0}
\end{aligned}
$$

So we have that $w_{k}^{\text {sgd }}=\left[\begin{array}{cc}(1-2 \eta \kappa)^{k} & 0 \\ 0 & (1-2 \eta)^{k}\end{array}\right] w_{0}$
For $\eta \in\left(\frac{1}{\kappa}, \frac{2}{1+\kappa}\right),|1-2 \eta|<1<|1-2 \eta \kappa|$

## Directional Bias of SGD/ GD: A Toy Example

- With moderate learning rate SGD converges along $e_{2}$ but oscillates along $e_{1}$ since $|1-2 \eta|<1<|1-2 \eta \kappa|$


## Directional Bias of SGD/ GD: A Toy Example

- With moderate learning rate SGD converges along $e_{2}$ but oscillates along $e_{1}$ since $|1-2 \eta|<1<|1-2 \eta \kappa|$
- SGD cannot fit $e_{1}$ before the learning rate decays, however when this happens, $e_{2}$ is already well fitted


## Directional Bias of SGD/ GD: A Toy Example

- With moderate learning rate SGD converges along $e_{2}$ but oscillates along $e_{1}$ since $|1-2 \eta|<1<|1-2 \eta \kappa|$
- SGD cannot fit $e_{1}$ before the learning rate decays, however when this happens, $e_{2}$ is already well fitted
- Overall, SGD fits e2 first then fits $e_{1}$, i.e., SGD converges to the minimum $w_{*}=0$ along $e_{1}$, which corresponds to the larger eigenvalue direction of $\nabla^{2} L_{\mathcal{S}}(w)$


## Directional Bias of SGD/ GD: A Toy Example

- With moderate learning rate SGD converges along $e_{2}$ but oscillates along $e_{1}$ since $|1-2 \eta|<1<|1-2 \eta \kappa|$
- SGD cannot fit $e_{1}$ before the learning rate decays, however when this happens, $e_{2}$ is already well fitted
- Overall, SGD fits e2 first then fits $e_{1}$, i.e., SGD converges to the minimum $w_{*}=0$ along $e_{1}$, which corresponds to the larger eigenvalue direction of $\nabla^{2} L_{\mathcal{S}}(w)$
- In the small learning rate regime, we note that SGD behaves similar to GD and thus goes after the smaller eigenvalue direction in such case


## Directional Bias of SGD/ GD: A Toy Example


(a) Small learning rate regime

(b) Moderate learning rate regime

Figure 1: Illustration for the 2-D example studied in Section 3. Here $\kappa=4$ and $w_{0}=(0.6,0.6)$. (a): Small learning rate regime. The small learning rate is $0.1 / \kappa$. In this regime SGD and GD behave similarly and they both converge along $e_{2}$. (b): Moderate learning rate regime. The initial moderate learning rate is $\eta=1.1 / \kappa$ and the decayed learning rate is $\eta^{\prime}=0.1 / \kappa$. In this regime GD converges along $e_{2}$ but SGD converges along $e_{1}$, the larger eigenvalue direction of the data matrix. Please refer to Section 3 for further discussions.

## Table of Contents

(1) Preliminary
(2) The Minimum-Norm Bias of SGD/GD
(3) Directional Bias of SGD/ GD: A Toy Example
(4) Directional Bias of SGD/GD: Main Results

## (5) References

## Directional Bias of SGD/ GD: Main Results

## Theorem 1: The directional bias of SGD with moderate LR, informal

Suppose $d \geq \operatorname{poly}(n)$. Denote $v=\frac{n}{\sqrt{d}}$ (which is small). Then with high probability it holds that $\lambda_{1}>\lambda_{2}+\Theta(\nu), \lambda_{n-1}>\lambda_{n}+\Theta(\nu)$. Suppose the initialization is set such that $x_{i}^{T}\left(w_{0}-w_{*}\right) \neq 0$ for every $i \in[n]$. Consider SGD with the following moderate learning rate scheme

$$
\eta_{k}=\left\{\begin{array}{l}
\eta \in\left(\frac{b}{\lambda_{1}-\Theta(v)}, \frac{b}{\lambda_{2}+\Theta(v)}\right), k=1, \ldots, k_{1} \\
\eta^{\prime} \in\left(0, \frac{b}{2 \lambda_{1}}\right), k=k_{1}+1, \ldots, k_{2}
\end{array}\right.
$$

then for $\epsilon$ such that poly $(\epsilon)>\nu$, there exist $k_{1}=\mathcal{O}\left(\log \frac{1}{\epsilon}+k_{2}\right)$ and $k_{2}>0$ such that with high probability the output of SGD $w^{\text {sgd }}:={ }^{\epsilon} w_{k_{2}}$ satisfies

$$
(1-\epsilon) \cdot \gamma_{1} \leq \frac{\left(P\left(w^{\text {sgd }}-w_{*}\right)\right)^{T} \cdot X X^{T} \cdot P\left(w^{\text {sgd }}-w_{*}\right)}{\left\|P\left(w^{\text {sgd }}-w_{*}\right)\right\|_{2}^{2}} \leq \gamma_{1}
$$

, where $\gamma_{1}$ is the largest eigenvalue of the data matrix $X X^{\top}$.

## Directional Bias of SGD/ GD: Main Results

## Theorem 2: The directional bias of GD with moderate LR, informal

Under the same conditions as Theorem 1, consider GD with the following moderate or small learning rate scheme

$$
\eta_{k} \in\left(0, \frac{n}{2 \lambda_{1}+\Theta(v)}\right), k=1, \ldots, k_{2}
$$

, then for any $\epsilon>0$, if $k_{2}>\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$, then with high probability the output of GD $w^{\mathrm{gd}}:=w_{k_{2}}$ satisfies

$$
\gamma_{n} \leq \frac{\left(P\left(w^{g d}-w_{*}\right)\right)^{T} \cdot X X^{T} \cdot P\left(w^{g d}-w_{*}\right)}{\left\|P\left(w^{g d}-w_{*}\right)\right\|_{2}^{2}} \leq(1+\epsilon) \cdot \gamma_{n}
$$

, where $\gamma_{n}$ is the smallest eigenvalue of the data matrix $X X^{\top}$ restricted in the column space of $X$.

## Directional Bias of SGD/ GD: Main Results

## Theorem 2: The directional bias of GD with moderate LR, informal

Under the same conditions as Theorem 1, consider GD with the following moderate or small learning rate scheme

$$
\eta_{k} \in\left(0, \frac{n}{2 \lambda_{1}+\Theta(v)}\right), k=1, \ldots, k_{2}
$$

, then for any $\epsilon>0$, if $k_{2}>\mathcal{O}\left(\log \frac{1}{\epsilon}\right)$, then with high probability the output of GD $w^{\mathrm{gd}}:=w_{k_{2}}$ satisfies

$$
\gamma_{n} \leq \frac{\left(P\left(w^{g d}-w_{*}\right)\right)^{T} \cdot X X^{T} \cdot P\left(w^{g d}-w_{*}\right)}{\left\|P\left(w^{g d}-w_{*}\right)\right\|_{2}^{2}} \leq(1+\epsilon) \cdot \gamma_{n}
$$

, where $\gamma_{n}$ is the smallest eigenvalue of the data matrix $X X^{\top}$ restricted in the column space of $X$.

Thus Theorem 1 and 2 suggest that, when projected onto the data manifold, SGD and GD converge to the optimum along the largest and smallest eigenvalue direction respectively.

## Directional Bias of SGD/ GD: Main Results

## Theorem 3: The directional bias of SGD with small LR, informal)

Theorem 2 applies to (SGD) with the following small learning rate scheme

$$
\eta_{k}=\eta^{\prime} \in\left(0, \frac{b}{2 \lambda_{1}+\Theta(v)}\right), k=1, \ldots, k_{2}
$$

## Directional Bias of SGD/ GD: Main Results

## Theorem 3: The directional bias of SGD with small LR, informal)

Theorem 2 applies to (SGD) with the following small learning rate scheme

$$
\eta_{k}=\eta^{\prime} \in\left(0, \frac{b}{2 \lambda_{1}+\Theta(v)}\right), k=1, \ldots, k_{2}
$$

## Theorem 4: Effects of the directional bias, informal (Gist)

- In the moderate learning rate regime, there is a separation between the test error of SGD and that of GD. In detail, early stopped SGD finds a nearly optimal solution thanks to its particular directional bias. In contrast, early stopped GD can only find a suboptimal one.
- In the small learning rate regime, however, SGD no longer admits the dedicated directional bias for moderate learning rate. Instead it behaves similarly as GD, and hence outputs suboptimal solutions when early stopping is adopted.


## Directional Bias of SGD/ GD: Main Results

- Under the practically used moderate learning rate, there is a separation between the generalization abilities of SGD and GD


## Directional Bias of SGD/ GD: Main Results

- Under the practically used moderate learning rate, there is a separation between the generalization abilities of SGD and GD
- This work gives a theoretical justification of the phenomenon that SGD outperforms GD when the learning rate is moderate


## Directional Bias of SGD/ GD: Main Results

- Under the practically used moderate learning rate, there is a separation between the generalization abilities of SGD and GD
- This work gives a theoretical justification of the phenomenon that SGD outperforms GD when the learning rate is moderate

(a) Linear regression on synthetic data

(b) Neural network on a subset of FashionMNIST

Figure 2: Comparison of the (relative) Rayleigh quotients. (a): A linear regression example. We randomly draw 100 samples from a 10,000 -dimensional space as described in Section 4 , where $\zeta \sim \mathcal{U}([0.5,1])$. The small learning rate scheme is specified by $\left(\eta^{\prime}, k_{2}\right)=\left(0.2,10^{4}\right)$, and the moderate learning rate scheme is specified by $\left(\eta, \eta^{\prime}, k_{1}, k_{2}\right)=\left(1.05,0.1,2 \times 10^{3}, 3 \times 10^{3}\right)$. Numerical results show the Rayleigh quotient converges to its maximum for SGD with moderate learning rate, and converges to its minimum for GD and SGD with small learning rate, which verifies Theorems 1,2 and 3. (b): A neural network example. The plots are averaged over 10 runs. We randomly draw 2,000 samples from FashionMNIST as the training set. The model is a 5 -layer convolutional neural network. The small learning rate scheme is specified by $\left(\eta^{\prime}, k_{2}\right)=\left(10^{-3}, 10^{4}\right)$, and the moderate learning rate scheme is specified by $\left(\eta, \eta^{\prime}, k_{1}, k_{2}\right)=\left(10^{-2}, 10^{-3}, 2.5 \times 10^{3}, 10^{4}\right)$. Since neural network is non-convex, we compare the relative Rayleigh quotient of the concerned algorithms, i.e., the Rayleigh quotient of the convergence directions divided by the maximum absolute eigenvalue of the Hessian (see Appendix D.3).


Figure 3: The test accuracy of a neural network on a subset of FashionMNIST. The plots are averaged over 10 runs. The experimental setting is identical to that in Figure 2(b). The plots show that SGD with moderate learning rate achieves the highest test accuracy, and GD and SGD with small learning rate perform similarly, but are worse than the former.

## Table of Contents

(1) Preliminary
(2) The Minimum-Norm Bias of SGD/GD
(3) Directional Bias of SGD/ GD: A Toy Example
(4) Directional Bias of SGD/GD: Main Results
(5) References

## References

# Jingfeng Wu et al. "Direction Matters: On the Implicit Bias of Stochastic Gradient Descent with Moderate Learning Rate". In: International Conference on Learning Representations. 



## Thank you!

