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Preliminary

We introduce some notation here:

(x , y) ∈ Rd × R be a pair of d-dimensional feature vector and
1-dimensional label

Consider a linear regression problem with square loss defined as
l(x , y ;w) := (wT x − y)2, where w ∈ Rd is the model parameter

Let D be the population distribution over (x , y)

Test loss, LD(w) := E(x ,y)∼D[l(x , y ;w)]

Training/ empirical loss, LS(w) :=
1

n

n∑
i=1

(wT xi − yi )
2, where

S := {(xi , yi )}ni=1 is a training set of n data points drawn i.i.d. from
the population distribution D
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Preliminary

Gradient Descent (GD):

wk+1 = wk − ηk∇LS(wk) = wk −
2ηk
n

n∑
i=1

xi (x
T
i wk − yi )

Mini-Batch Stochastic Gradient Descent (SGD):

wk,j+1 = wk,j −
ηk
b

∑
i∈Bkj

∇li (wk,j) = wk,j −
2ηk
b

∑
i∈Bkj

xi (x
T
i wk,j − yi ),

j = 1, . . . ,m batches

Note that j indexes batches and k indexes epochs
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Preliminary

Condition Number of a matrix A:

κ(A) =
σmax(A)

σmin(A)
, measures the ratio of the maximum relative

stretching to the maximum relative shrinking that matrix does to any
non-zero vectors

If D = Diag(di ) is a diagonal matrix, then κ(D) =
max(di )

min(di )

A “problem” with a low condition number is said to be
well-conditioned, while a problem with a high condition number is
said to be ill-conditioned

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD 03/22/23 6 / 30



Preliminary

Condition Number of a matrix A:

κ(A) =
σmax(A)

σmin(A)
, measures the ratio of the maximum relative

stretching to the maximum relative shrinking that matrix does to any
non-zero vectors

If D = Diag(di ) is a diagonal matrix, then κ(D) =
max(di )

min(di )

A “problem” with a low condition number is said to be
well-conditioned, while a problem with a high condition number is
said to be ill-conditioned

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD 03/22/23 6 / 30



Preliminary

Condition Number of a matrix A:

κ(A) =
σmax(A)

σmin(A)
, measures the ratio of the maximum relative

stretching to the maximum relative shrinking that matrix does to any
non-zero vectors

If D = Diag(di ) is a diagonal matrix, then κ(D) =
max(di )

min(di )

A “problem” with a low condition number is said to be
well-conditioned, while a problem with a high condition number is
said to be ill-conditioned

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD 03/22/23 6 / 30



Preliminary

Projection operator P:

A projection on a vector space V is a linear operator P : V → V such
that P2 = P

For example, P =

1 0 0
0 1 0
0 0 0

 projects a point (x , y , z) ∈ R3 to its

image on the x − y plane, i.e., (x , y , 0) ∈ R3
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Preliminary

Column space of a matrix A:

Let K be a field of scalars. Let A be an m × n matrix, with column
vectors v1, . . . , vn

A linear combination of these vectors is any vector of the form
c1v1 + · · ·+ cnvn, where c1, . . . , cn are scalars

The set of all possible linear combinations of v1, . . . , vn is called the
column space of A

Any linear combination of the column vectors of a matrix A can be
written as the product of A with a column vector:

A

c1...
cn

 = c1

a11...
am1

+ · · ·+ cn

a1n...
amn

 = c1v1 + · · ·+ cnvn

Therefore, the column space of A consists of all possible products Ax ,
for x ∈ Kn
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Preliminary

Lipschitz continuous gradient:

Let f be a twice differentiable convex function

Then f has a Lipschitz continuous gradient if there exists an L such
that ∇2f 4 LI

In other words, the largest eigenvalue of the Hessian of f is uniformly
upper bounded by L everywhere
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The Minimum-Norm Bias of SGD/ GD

We consider the case of SGD/ GD optimizing linear regression problem:

Rewrite training loss as LS(w) =
1

n
||XTw − Y ||22, where X ∈ Rd×n

and Y ∈ Rn

Then its global minima are given by
W∗ := {w ∈ Rd : Pw = w∗, w∗ := X (XTX )−1Y }, where P is the
projection operator onto the column space of X

We focus on overparameterized cases where W∗ is not a singleton
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The Minimum-Norm Bias of SGD/ GD

Notice that every gradient ∇li (w) = 2xi (x
T
i w − yi ) is spanned in the

column space of the data manifold

Thus, GD and SGD can never move along the direction that is
orthogonal to the data manifold

This means they implicitly admit the following hypothesis class:

HS = {w ∈ Rd : P⊥w = P⊥w0},

where w0 is the initializtion and P⊥ = I − P is the projection operator
onto the orthogonal complement to the column space of X
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The Minimum-Norm Bias of SGD/ GD

For any global optimum w ∈W∗, i.e., Pw = w∗, consider the following:

w − w0 = (P + P⊥)(w − w0) ⇐⇒ ||w − w0||22 = ||(P + P⊥)(w − w0)||22

= ||Pw − Pw0 + P⊥(w − w0)}||22

= ||w∗ − Pw0 + P⊥(w − w0)||22
= ||w∗ − Pw0||22 + ||P⊥(w − w0)||22 + 2(w∗ − Pw0)T (P⊥(w − w0))

= ||w∗ − Pw0||22 + ||P⊥(w − w0)||22 + 2(w − w0)TPTP⊥(w − w0)

= ||w∗ − Pw0||22 + ||P⊥(w − w0)||22
Note here that ||w − Pw0||22 + ||P⊥(w − w0)||22 is minimized when
P⊥w = P⊥w0, i.e., w ∈ HS .
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The Minimum-Norm Bias of SGD/ GD

Thus w is the solution found by SGD/ GD when the learning rate is
set properly so that the algorithms can find a global optimum

Since initialization is usually set to zero, SGD/ GD is biased to find
the global optimum that is closest to the initialization, which is
referred as the “minimum-norm” bias in literature
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Directional Bias of SGD/ GD: A Toy Example

We now conduct a 2-dimensional case study to motivate the directional
bias of SGD in the moderate learning rate regime

Consider a training set consisting of just two orthogonal points,

S =

{(
x1 =

[√
κ

0

]
, y1 = 0

)
,

(
x2 =

[
0
1

]
, y2 = 0

)}
, κ > 2

Let w =

[
w1

w2

]
LS(w) =

1

n

n∑
i=1

(wT xi − yi )
2 =

1

2
(l1(w) + l2(w)) =

1

2
(w2

1κ+ w2
2 )

∇LS(w) = 0 ⇐⇒
[
w1κ
w2

]
=

[
0
0

]
So w∗ = 0 is the unique minimum of LS(w)
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Directional Bias of SGD/ GD: A Toy Example

Further,

∇2LS(w) =

[
κ 0
0 1

]
=⇒ LS(w) is κ-smooth

∇2l1(w) =

[
2κ 0
0 0

]
=⇒ l1(w) is 2κ-smooth

∇2l2(w) =

[
0 0
0 2

]
=⇒ l2(w) is 2-smooth

Thus l2(w) is 2-smooth, but l1(w), the individual loss for data x1, is
only 2κ-smooth, which is more ill-conditioned compared to LS(w)
and l2(w)
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Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wk = wk−1 − η∇LS(wk−1)

= wk−1 − η
[
wk−1,1κ
wk−1,2

]

= wk−1 − η
[
κ 0
0 1

]
wk−1

=

[
1− ηκ 0

0 1− η

]
wk−1

=

[
(1− ηκ)k 0

0 (1− η)k

]
w0

So we have that wgd
k =

[
(1− ηκ)k 0

0 (1− η)k

]
w0

For η ∈
(1

κ
,

2

1 + κ

)
, |1− ηκ| < |1− η| < 1

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD 03/22/23 18 / 30



Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wk = wk−1 − η∇LS(wk−1)

= wk−1 − η
[
wk−1,1κ
wk−1,2

]
= wk−1 − η

[
κ 0
0 1

]
wk−1

=

[
1− ηκ 0

0 1− η

]
wk−1

=

[
(1− ηκ)k 0

0 (1− η)k

]
w0

So we have that wgd
k =

[
(1− ηκ)k 0

0 (1− η)k

]
w0

For η ∈
(1

κ
,

2

1 + κ

)
, |1− ηκ| < |1− η| < 1

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD 03/22/23 18 / 30



Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wk = wk−1 − η∇LS(wk−1)

= wk−1 − η
[
wk−1,1κ
wk−1,2

]
= wk−1 − η

[
κ 0
0 1

]
wk−1

=

[
1− ηκ 0

0 1− η

]
wk−1

=

[
(1− ηκ)k 0

0 (1− η)k

]
w0

So we have that wgd
k =

[
(1− ηκ)k 0

0 (1− η)k

]
w0

For η ∈
(1

κ
,

2

1 + κ

)
, |1− ηκ| < |1− η| < 1

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD 03/22/23 18 / 30



Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wk = wk−1 − η∇LS(wk−1)

= wk−1 − η
[
wk−1,1κ
wk−1,2

]
= wk−1 − η

[
κ 0
0 1

]
wk−1

=

[
1− ηκ 0

0 1− η

]
wk−1

=

[
(1− ηκ)k 0

0 (1− η)k

]
w0

So we have that wgd
k =

[
(1− ηκ)k 0

0 (1− η)k

]
w0

For η ∈
(1

κ
,

2

1 + κ

)
, |1− ηκ| < |1− η| < 1

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD 03/22/23 18 / 30



Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wk = wk−1 − η∇LS(wk−1)

= wk−1 − η
[
wk−1,1κ
wk−1,2

]
= wk−1 − η

[
κ 0
0 1

]
wk−1

=

[
1− ηκ 0

0 1− η

]
wk−1

=

[
(1− ηκ)k 0

0 (1− η)k

]
w0

So we have that wgd
k =

[
(1− ηκ)k 0

0 (1− η)k

]
w0

For η ∈
(1

κ
,

2

1 + κ

)
, |1− ηκ| < |1− η| < 1

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD 03/22/23 18 / 30



Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wk = wk−1 − η∇LS(wk−1)

= wk−1 − η
[
wk−1,1κ
wk−1,2

]
= wk−1 − η

[
κ 0
0 1

]
wk−1

=

[
1− ηκ 0

0 1− η

]
wk−1

=

[
(1− ηκ)k 0

0 (1− η)k

]
w0

So we have that wgd
k =

[
(1− ηκ)k 0

0 (1− η)k

]
w0

For η ∈
(1

κ
,

2

1 + κ

)
, |1− ηκ| < |1− η| < 1

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD 03/22/23 18 / 30



Directional Bias of SGD/ GD: A Toy Example

With moderate learning rate GD is convergent for both directions e1
and e2

GD fits e1 faster since the contraction parameter is smaller, i.e.,
|1− ηκ| < |1− η| < 1

Thus observing the entire optimization path, GD approaches the
minimum w∗ = 0 along e2, which corresponds to the smaller
eigenvalue direction of ∇2LS(w)

We note this directional bias for GD also holds in the small learning
rate regime
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Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

wk,j+1 = wk−1,j −
η

b

∑
i∈Bkj

∇li (wk−1,j)

= wk−1 − 2η

[
wk−1,1κ
wk−1,2

]

= wk−1 − 2η

[
κ 0
0 1

]
wk−1

=

[
1− 2ηκ 0

0 1− 2η

]
wk−1

=

[
(1− 2ηκ)k 0

0 (1− 2η)k

]
w0

So we have that w sgd
k =

[
(1− 2ηκ)k 0

0 (1− 2η)k

]
w0

For η ∈
(1

κ
,

2

1 + κ

)
, |1− 2η| < 1 < |1− 2ηκ|
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Directional Bias of SGD/ GD: A Toy Example

With moderate learning rate SGD converges along e2 but oscillates
along e1 since |1− 2η| < 1 < |1− 2ηκ|

SGD cannot fit e1 before the learning rate decays, however when this
happens, e2 is already well fitted

Overall, SGD fits e2 first then fits e1, i.e., SGD converges to the
minimum w∗ = 0 along e1, which corresponds to the larger eigenvalue
direction of ∇2LS(w)

In the small learning rate regime, we note that SGD behaves similar to
GD and thus goes after the smaller eigenvalue direction in such case
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Directional Bias of SGD/ GD: Main Results

Theorem 1: The directional bias of SGD with moderate LR, informal

Suppose d ≥poly(n). Denote v =
n√
d

(which is small). Then with high

probability it holds that λ1 > λ2 + Θ(ν), λn−1 > λn + Θ(ν). Suppose the
initialization is set such that xTi (w0 − w∗) 6= 0 for every i ∈ [n]. Consider SGD
with the following moderate learning rate scheme

ηk =


η ∈

( b

λ1 −Θ(v)
,

b

λ2 + Θ(v)

)
, k = 1, . . . , k1;

η′ ∈
(

0,
b

2λ1

)
, k = k1 + 1, . . . , k2,

then for ε such that poly(ε) > ν, there exist k1 = O
(

log
1

ε
+ k2

)
and k2 > 0

such that with high probability the output of SGD w sgd := wk2 satisfies

(1− ε) · γ1 ≤
(P(w sgd − w∗))T · XXT · P(w sgd − w∗)

||P(w sgd − w∗)||22
≤ γ1

, where γ1 is the largest eigenvalue of the data matrix XXT .
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Directional Bias of SGD/ GD: Main Results

Theorem 2: The directional bias of GD with moderate LR, informal

Under the same conditions as Theorem 1, consider GD with the following
moderate or small learning rate scheme

ηk ∈
(

0,
n

2λ1 + Θ(v)

)
, k = 1, . . . , k2

, then for any ε > 0, if k2 > O
(

log
1

ε

)
, then with high probability the output of

GD wgd := wk2 satisfies

γn ≤
(P(wgd − w∗))T · XXT · P(wgd − w∗)

||P(wgd − w∗)||22
≤ (1 + ε) · γn

, where γn is the smallest eigenvalue of the data matrix XXT restricted in the
column space of X .

Thus Theorem 1 and 2 suggest that, when projected onto the data
manifold, SGD and GD converge to the optimum along the largest and
smallest eigenvalue direction respectively.
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Directional Bias of SGD/ GD: Main Results

Theorem 3: The directional bias of SGD with small LR, informal)

Theorem 2 applies to (SGD) with the following small learning rate scheme

ηk = η′ ∈
(

0,
b

2λ1 + Θ(v)

)
, k = 1, . . . , k2

Theorem 4: Effects of the directional bias, informal (Gist)

In the moderate learning rate regime, there is a separation between
the test error of SGD and that of GD. In detail, early stopped SGD
finds a nearly optimal solution thanks to its particular directional bias.
In contrast, early stopped GD can only find a suboptimal one.

In the small learning rate regime, however, SGD no longer admits the
dedicated directional bias for moderate learning rate. Instead it
behaves similarly as GD, and hence outputs suboptimal solutions
when early stopping is adopted.
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Directional Bias of SGD/ GD: Main Results

Under the practically used moderate learning rate, there is a
separation between the generalization abilities of SGD and GD

This work gives a theoretical justification of the phenomenon that
SGD outperforms GD when the learning rate is moderate
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Thank you!
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