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Preliminary

We introduce some notation here:

o (x,y) € R? x R be a pair of d-dimensional feature vector and
1-dimensional label
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We introduce some notation here:

(x,y) € RY x R be a pair of d-dimensional feature vector and
1-dimensional label

Consider a linear regression problem with square loss defined as

I(x,y;w) := (wx — y)?, where w € RY is the model parameter

Let D be the population distribution over (x, y)

Test loss, Lp(w) := E y)~pl/(x, y; w)]

1 n
Training/ empirical loss, Ls(w) := = > (w'x; — y;)?, where
mi=1

S = {(x;,yi)}"_; is a training set of n data points drawn i.i.d. from
the population distribution D
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Preliminary

Gradient Descent (GD):

_ _ 21 & T
© Wit1 = wk — Nk Vis(wi) = wy — o xi(x;" wi — yi)
i=1
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Preliminary

Gradient Descent (GD):

_ _ 21 & T
© Wit1 = wk — Nk Vis(wi) = wy — - xi(x;" wi — yi)
i=1
Mini-Batch Stochastic Gradient Descent (SGD):
K 21k
© Wi j+1 = Wk — % > Vli(wi) = wij — 7’; > X wij = vi),
iijk iijk

j=1,..., m batches

@ Note that j indexes batches and k indexes epochs
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Preliminary

Condition Number of a matrix A:
o A
e k(A) = 7max( ),
Omin(A)" . |
stretching to the maximum relative shrinking that matrix does to any
non-zero vectors

measures the ratio of the maximum relative
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stretching to the maximum relative shrinking that matrix does to any
non-zero vectors
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Preliminary

Condition Number of a matrix A:

e k(A) = M(A), measures the ratio of the maximum relative
Umin(A)

stretching to the maximum relative shrinking that matrix does to any
non-zero vectors

max(d;)

min(d})

@ A "problem” with a low condition number is said to be
well-conditioned, while a problem with a high condition number is
said to be ill-conditioned

e If D = Diag(d}) is a diagonal matrix, then (D) =
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Preliminary

Projection operator P:

@ A projection on a vector space V is a linear operator P : V — V such
that P2 = P
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Preliminary

Projection operator P:
@ A projection on a vector space V is a linear operator P : V — V such
that P2 = P
100
@ For example, P= {0 1 0
0 00O
image on the x — y plane, i.e., (x,y,0) € R3

projects a point (x,y,z) € R3 to its
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Preliminary

Column space of a matrix A:

@ Let K be a field of scalars. Let A be an m x n matrix, with column
vectors vi,...,V,
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Column space of a matrix A:
@ Let K be a field of scalars. Let A be an m x n matrix, with column

vectors vi,...,V,
@ A linear combination of these vectors is any vector of the form
civi + -+ cpVvn, Where ¢, ..., c, are scalars
@ The set of all possible linear combinations of vy, ..., v, is called the

column space of A
@ Any linear combination of the column vectors of a matrix A can be
written as the product of A with a column vector:
C1 ar ain
A ]l =a + -+ Cn =qcvi+ -+ CaVn

Cn aml amn
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Preliminary

Column space of a matrix A:

Let K be a field of scalars. Let A be an m X n matrix, with column
vectors vi,...,V,
A linear combination of these vectors is any vector of the form
civi + -+ cpVvn, Where ¢, ..., c, are scalars
The set of all possible linear combinations of vy, ..., v, is called the
column space of A
Any linear combination of the column vectors of a matrix A can be
written as the product of A with a column vector:

C1 ar ain
Al =qa + -+ Cn =cavi+ -+ chVvp

Cn aml amn
Therefore, the column space of A consists of all possible products Ax,
for x € K"
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Lipschitz continuous gradient:

@ Let f be a twice differentiable convex function
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Preliminary

Lipschitz continuous gradient:
@ Let f be a twice differentiable convex function

@ Then f has a Lipschitz continuous gradient if there exists an L such
that V2f < L/

@ In other words, the largest eigenvalue of the Hessian of f is uniformly
upper bounded by L everywhere
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The Minimum-Norm Bias of SGD/ GD

We consider the case of SGD/ GD optimizing linear regression problem:

1
@ Rewrite training loss as Ls(w) = E”XTW — Y|[3, where X € Rd*n
and Y € R”
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The Minimum-Norm Bias of SGD/ GD

We consider the case of SGD/ GD optimizing linear regression problem:

1
o Rewrite training loss as Ls(w) = =||XTw — Y||3, where X € RIx"
n
and Y € R”

@ Then its global minima are given by
Wi i={w e RY: Pw = w,, w, := X(XTX)"1Y}, where P is the
projection operator onto the column space of X

@ We focus on overparameterized cases where W, is not a singleton

03/22/23
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The Minimum-Norm Bias of SGD/ GD

o Notice that every gradient V/;(w) = 2x;(x,

column space of the data manifold

w — y;) is spanned in the
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The Minimum-Norm Bias of SGD/ GD

o Notice that every gradient V/;(w) = 2x;(x” w — y;) is spanned in the
column space of the data manifold

@ Thus, GD and SGD can never move along the direction that is
orthogonal to the data manifold

@ This means they implicitly admit the following hypothesis class:
HS:{WeRd:PJ_W:PJ_WO},

where wy is the initializtion and P, = | — P is the projection operator
onto the orthogonal complement to the column space of X
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The Minimum-Norm Bias of SGD/ GD

For any global optimum w € W,, i.e., Pw = w,, consider the following:
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For any global optimum w € W,, i.e., Pw = w,, consider the following:

w—wy=(P+P)(w—w) <> [lw—wo|l5=I(P+P.)(w—w)l3
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The Minimum-Norm Bias of SGD/ GD

For any global optimum w € W,, i.e., Pw = w,, consider the following:
w—w=(P+PL)(w—w) < |lw—wol|5=I[|(P+PL)(w—w)l3

= ||Pw — Pwg + P (w — wo)}|[3

= ||we — Pwp + P (w — wo)||3

= [|wi — Pwol[3 + [|PL(w — wo)][3 + 2(ws — Pwo) T (PL(w — wo))
= [|wi — Pwol[3 +[|PL(w — wo)|[5 +2(w — wo) T PT PL(w — wo)
= |lws — Pwol[3 +[|PL(w — wo)|13

o Note here that ||w — Pwg||3 + ||PL(w — wp)||3 is minimized when
Pw=P w,ie, weHs.
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The Minimum-Norm Bias of SGD/ GD

@ Thus w is the solution found by SGD/ GD when the learning rate is
set properly so that the algorithms can find a global optimum
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The Minimum-Norm Bias of SGD/ GD

@ Thus w is the solution found by SGD/ GD when the learning rate is
set properly so that the algorithms can find a global optimum

@ Since initialization is usually set to zero, SGD/ GD is biased to find
the global optimum that is closest to the initialization, which is
referred as the “minimum-norm” bias in literature
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Directional Bias of SGD/ GD: A Toy Example

We now conduct a 2-dimensional case study to motivate the directional
bias of SGD in the moderate learning rate regime

o Consider a training set consisting of just two orthogonal points,

A A
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We now conduct a 2-dimensional case study to motivate the directional
bias of SGD in the moderate learning rate regime
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Directional Bias of SGD/ GD: A Toy Example

We now conduct a 2-dimensional case study to motivate the directional
bias of SGD in the moderate learning rate regime

o Consider a training set consisting of just two orthogonal points,

T A

o Let w= [Wl

o Ls(w) =1 o (wTxi — )2 = -(h(w) + h(w) = 5 (wlx + w})
i=1
o Vig(w) =0 < {Mz:] = [8}

@ So wy = 0 is the unique minimum of Ls(w)
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Directional Bias of SGD/ GD: A Toy Example

Further,

o V2Is(w) = {g (1)] — Ls(w) is k-smooth
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Directional Bias of SGD/ GD: A Toy Example

Further,

o V2Is(w) =

o V2h(w) = [

o

2K
0

Sai Anuroop Kesanapalli (USC)

1| = Ls(w) is k-smooth

8} = h(w) is 2k-smooth
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Directional Bias of SGD/ GD: A Toy Example

Further,

o V2Is(w) = {g (1)] — Ls(w) is k-smooth

o V2h(w) = [2: 8} = h(w) is 2k-smooth

o V2h(w) = [8 g] = h(w) is 2-smooth
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Directional Bias of SGD/ GD: A Toy Example

Further,
o V2Is(w) = {g (1) — Ls(w) is k-smooth
o V2h(w) = [2: 8} = h(w) is 2k-smooth
, 00 .
o Veh(w) = 0 2| = h(w) is 2-smooth

@ Thus h(w) is 2-smooth, but /(w), the individual loss for data xi, is
only 2k-smooth, which is more ill-conditioned compared to Ls(w)
and Iz(W)
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Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wy = wx_1 — NV Ls(wk_1)
Wk—l,lf’f:l

_Wkl_n[wk 1o
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Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wy = wx_1 — NV Ls(wk_1)

Wk—l,lf"?:l

_Wkl_n[wk 1o

k 0
= Wk—_1—T1 0 1 Wgk—1
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Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD



Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wy = wx_1 — NV Ls(wk_1)

Wk—l,lf"?:l

_Wkl_n[wk 1o

k 0
= Wk—_1—T1 |:0 1:| Wgk—1
_|[1-=ns O
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= [(1 —Onﬁ)k a1 —077)4 wo
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Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wy = wx_1 — NV Ls(wk_1)

Wk—l,lf"?:l

_Wkl_n[wk 1o

k 0

_[1—77/@ 0 ]Wkl
0 1—n -
(1 —nr)k 0
:[ 0 (1—n)k]wo

)k
So we have that Wfd — [(1 1K) 0
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Directional Bias of SGD/ GD: A Toy Example

Let us now analytically solve for the solutions of GD and SGD. Starting
with GD, recall that the update step is wy = wx_1 — NV Ls(wk_1)
= Wk—1—1) [Wk_l’lﬂ
Wk—1,2
k 0
= Wk—1—17 [0 1] Wk—1

_|[1-=ns O
[ 0 l—n]wkl

_[@=mr)< 0
_[ 0 (1-np)k "™
gd _ (1—77"5)k 0
So we have that w; —[ 0 (1— ) wo
1 2
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Directional Bias of SGD/ GD: A Toy Example

@ With moderate learning rate GD is convergent for both directions e;
and &
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@ GD fits e; faster since the contraction parameter is smaller, i.e.,
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Directional Bias of SGD/ GD: A Toy Example

@ With moderate learning rate GD is convergent for both directions e;
and &

@ GD fits e; faster since the contraction parameter is smaller, i.e.,
[1—ns| <|l-n[<1
@ Thus observing the entire optimization path, GD approaches the

minimum w, = 0 along e, which corresponds to the smaller
eigenvalue direction of V2Lg(w)
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Directional Bias of SGD/ GD: A Toy Example

@ With moderate learning rate GD is convergent for both directions e;
and &

@ GD fits e; faster since the contraction parameter is smaller, i.e.,
[1—ns| <|l-n[<1
@ Thus observing the entire optimization path, GD approaches the

minimum w, = 0 along e, which corresponds to the smaller
eigenvalue direction of V2Lg(w)

@ We note this directional bias for GD also holds in the small learning
rate regime
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Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

Wi jt1 = Wk—1, — % > Vii(wik-1)
ieBf

Wk—1,1f<c]

= Wj_1—2
Wk—1 n|:Wk1,2
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For SGD, recall that the update step is
Wi jt1 = Wk—1, — % > Vii(wik-1)
ieBf

= w2 ]
k 0
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For SGD, recall that the update step is
Wi jt1 = Wk—1, — % > Vii(wik-1)
ieBf

Wk—1,1f<c]

= Wj_1—2
Wk—1 n|:Wk1,2

Kk 0
= Wk_1 _277 0 1 Wik—1

1 -=2nk 0 W
| o0 1—2p| k1
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Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD



Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

Wi jt1 = Wk—1, — % > Vii(wik-1)
ieBf

Wk—1,1f<c]

= Wj_1—2
Wk—1 n|:Wk1,2

Kk 0
= Wk_1 _277 0 1 Wik—1

1 -=2nk 0 W

| o0 1—2p| k1

_[@=2mp) 0

B 0 (1—2n)k] ™

(1 —2nk)k 0

So we have that w®? = [ 0 (1—2n)k

Sai Anuroop Kesanapalli (USC) Implicit Bias of SGD



Directional Bias of SGD/ GD: A Toy Example

For SGD, recall that the update step is

7
Wi+l = Wi-1j = 20 Vii(wie-1;)
iijk
Wk-11K
:Wk1_277[wk 12]

Kk 0
= Wk_1 _277 0 1 Wik—1

1 -=2nk 0 W

| o0 1—2p| k1

_[@=2mp) 0

B 0 (1—2n)k] ™

(1 —2nk)k 0

0 (1—2n)k| "

So we have that w,fgd = [

1 2
F e(—,—>,1—2 <1<|1-2
orn € i | ul \ k|
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@ With moderate learning rate SGD converges along e, but oscillates
along e; since |1 —2n| <1 < |1 — 27k
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@ SGD cannot fit e; before the learning rate decays, however when this
happens, e is already well fitted

@ Overall, SGD fits e2 first then fits e, i.e., SGD converges to the

minimum w, = 0 along e;, which corresponds to the larger eigenvalue
direction of V2Ls(w)
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Directional Bias of SGD/ GD: A Toy Example

@ With moderate learning rate SGD converges along e; but oscillates
along e; since |1 —2n| <1 < |1 — 27k

@ SGD cannot fit e; before the learning rate decays, however when this
happens, e is already well fitted

@ Overall, SGD fits e2 first then fits e, i.e., SGD converges to the
minimum w, = 0 along e;, which corresponds to the larger eigenvalue
direction of V2Ls(w)

@ In the small learning rate regime, we note that SGD behaves similar to
GD and thus goes after the smaller eigenvalue direction in such case
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Directional Bias of SGD/ GD: A Toy Example

GD GD
SGD 08 SGD
0.6 E
04
0.2
2 o0 -l 2z g
/ J]]
-0.4
08 10 Loa 02 os os o8 1o
(a) Small learning rate regime (b) Moderate learning rate regime

Figure 1: Illustration for the 2-D example studied in Section 3. Here k = 4 and wo = (0.6, 0.6). (a): Small
learning rate regime. The small learning rate is 0.1/x. In this regime SGD and GD behave similarly and they
both converge along ez. (b): Moderate learning rate regime. The initial moderate learning rate is n = 1.1/k
and the decayed learning rate is n’ = 0.1/x. In this regime GD converges along e2 but SGD converges along
ey, the larger eigenvalue direction of the data matrix. Please refer to Section 3 for further discussions.
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Directional Bias of SGD/ GD: Main Results

Theorem 1: The directional bias of SGD with moderate LR, informal
Suppose d >poly(n). Denote v = \Lfd (which is small). Then with high

probability it holds that Ay > A, + ©(v), Ap—1 > A, + ©(v). Suppose the
initialization is set such that x./ (wy — wy) # 0 for every i € [n]. Consider SGD
with the following moderate learning rate scheme

b b
e </\1—(9(v)’/\2—|—€)(v))’
n € (0,2—[;\1), k=ki+1,... k,

k=1,... ki
M =

1
then for € such that poly(e) > v, there exist ky = O log = + ko ) and k> > 0
such that with high probability the output of SGD w9 :=“w,, satisfies

(P(wd —w, )T - XXT - P(wd — w,)

1—¢)-m <
o= TP(wee? — wlT =

, where 71 is the largest eigenvalue of the data matrix XX .
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Directional Bias of SGD/ GD: Main Results

Theorem 2: The directional bias of GD with moderate LR, informal

Under the same conditions as Theorem 1, consider GD with the following
moderate or small learning rate scheme

e € (o,r"e(v)), k=1,... k

1
, then for any € > 0, if ky > 0( log = ) then with high probability the output of
GD wed :— wy, satisfies

(P(w& —w,))T - XXT . P(w8 — w,)

Yn <
[P(wed — w,)]|3

<(1+4+€) -

, where 7, is the smallest eigenvalue of the data matrix XX restricted in the
column space of X.
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Directional Bias of SGD/ GD: Main Results

Theorem 2: The directional bias of GD with moderate LR, informal

Under the same conditions as Theorem 1, consider GD with the following
moderate or small learning rate scheme

e € (o,r"@(v)), k=1,... k

1
, then for any € > 0, if ky > (9( log = ) then with high probability the output of
GD wed :— wy, satisfies

(P(w& —w,))T - XXT . P(w8 — w,)
[|P(we? — w3

Yn < S(l“‘f)"}/n

, where 7, is the smallest eigenvalue of the data matrix XX restricted in the
column space of X.

Thus Theorem 1 and 2 suggest that, when projected onto the data
manifold, SGD and GD converge to the optimum along the largest and

smallest eigenvalue direction respectively.
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Directional Bias of SGD/ GD: Main Results

Theorem 3: The directional bias of SGD with small LR, informal)

Theorem 2 applies to (SGD) with the following small learning rate scheme

b
=q — ), k=1,...,k
Nk US <O> 2)\1 —|—@(v))’ 5 s K2
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Directional Bias of SGD/ GD: Main Results

Theorem 3: The directional bias of SGD with small LR, informal)

Theorem 2 applies to (SGD) with the following small learning rate scheme

b
=q — ), k=1,...,k
Mk US <0, 2)\1 +e(v))a ’ s K2

\

Theorem 4: Effects of the directional bias, informal (Gist)

@ In the moderate learning rate regime, there is a separation between
the test error of SGD and that of GD. In detail, early stopped SGD
finds a nearly optimal solution thanks to its particular directional bias.
In contrast, early stopped GD can only find a suboptimal one.

@ In the small learning rate regime, however, SGD no longer admits the
dedicated directional bias for moderate learning rate. Instead it
behaves similarly as GD, and hence outputs suboptimal solutions
when early stopping is adopted.
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@ Under the practically used moderate learning rate, there is a
separation between the generalization abilities of SGD and GD

@ This work gives a theoretical justification of the phenomenon that
SGD outperforms GD when the learning rate is moderate
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Directional Bias of SGD/ GD: Main Results

@ Under the practically used moderate learning rate, there is a
separation between the generalization abilities of SGD and GD

SGD outperforms GD

. L 0.0025
] SGD, small LR
% 0.0020 == GD, small LR
2 —— SGD, moderate LR
£ 2
-~ SGD, smail LR £0.0015 — GD, moderate (R
--- GD, small LR E
—— SGD, moderate LR 30.0010
—— GD, moderate LR o
£ 0.0005
B !
~ 9 0.0000 R
0 2000 4000 6000 8000 10000 0 2000 4000 6000 8000 10000

# Iteration # Iteration

(a) Linear regression on synthetic data (b) Neural network on a subset of FashionMNIST

Figure 2: Comparison of the (relative) Rayleigh quotients. (a): A linear regression example. We randomly
draw 100 samples from a 10, 000-dimensional space as described in Section 4, where ¢ ~ 1([0.5,1]). The
small learning rate scheme is specified by (7', k2) = (0.2,10%), and the moderate learning rate scheme is
specified by (n,7', k1, k2) = (1.05,0.1,2 x 10°,3 x 10). Numerical results show the Rayleigh quotient
converges to its maximum for SGD with moderate learning rate, and converges to its minimum for GD and SGD
with small learning rate, which verifies Theorems 1, 2 and 3. (b): A neural network example. The plots are
averaged over 10 runs. We randomly draw 2, 000 samples from FashionMNIST as the training set. The model is
a 5-layer convolutional neural network. The small learning rate scheme is specified by (n',k2) = (1073,10%),
and the moderate learning rate scheme is specified by (1,7, k1, k2) = (1072,107°,2.5 x 10°,10"). Since
neural network is non-convex, we compare the relative Rayleigh quotient of the concerned algorithms, i.c., the
Rayleigh quotient of the convergence directions divided by the maximum absolute eigenvalue of the Hessian
(see Appendix D.3).
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This work gives a theoretical justification of the phenomenon that
when the learning rate is moderate
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Figure 3: The test accuracy of a neural
network on a subset of FashionMNIST. The
plots are averaged over 10 runs. The exper-
imental setting is identical to that in Figure
2(b). The plots show that SGD with moder-
ate learning rate achieves the highest test ac-
curacy, and GD and SGD with small learn-
ing rate perform similarly, but are worse than
the former.
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