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Goal

● To implement and study the Forward-Forward (FF) algorithm, and 
compare it with the traditional back-propagation (BackProp) 
framework 

● Study the architectural differences of FF and BackProp and explore 
new architectures

● Analyze system performance of FF and BackProp



● Every layer has its own 
objective (goodness) function

● Layers are trained separately
● Gradients are computed
● No flow of gradients across 

layers

BackPropFF
● There is a global objective 

(loss) function
● Layers are trained jointly
● Gradients are computed
● Flow of gradients across 

layers



Exp 1: Comparison of Baseline FF with BackProp

layers = [ 
    Linear_layer(28*28, 2000, device=device), 
    Linear_layer(2000, 2000, device=device), 
    Linear_layer(2000, 2000, device=device), 
    Linear_layer(2000, 2000, device=device) 
  ] 
net = Net(layers, 10)

Net( 
  (linear1): Linear(in_features=784, out_features=250, bias=True) 
  (relu1): ReLU() 
  (linear2): Linear(in_features=250, out_features=110, bias=True) 
  (relu2): ReLU() 
  (linear3): Linear(in_features=110, out_features=10, bias=True) 
)

BackProp

FF



Test Accuracy (%)

Algo\Data MNIST Fashion 
MNIST SVHN CIFAR 10 CIFAR 100

FF 97.14 85.47 64.93 46.13 10.33

BackProp 98.04 89.43 80.52 53.88 23.75

Exp 1: Comparison of Baseline FF with BackProp



Exp 1: Comparison of Baseline FF with BackProp

E2E Time (sec)

FF BackProp



Exp 1: Comparison of Baseline FF with BackProp

GPU Compute Time | CIFAR100

FF BackProp



Exp 1: Comparison of Baseline FF with BackProp

Memory Usage (%) | MNIST

FF BackProp



Exp 1: Comparison of Baseline FF with BackProp

Power Drawn (W) | MNIST

FF BackProp



Exp 2: Hybrid FF + BackProp

Dataset: MNIST
● Exp 2 a): Testing BackProp performance with FF as weight initializer
➡ Method: Train the network using FF for 60 epochs followed by BackProp for 

20 epochs with reduced learning rate 1e-4 
● Exp 2 b): Testing FF performance with BackProp as weight initializer
➡ Method: Train the network using BackProp for 20 epochs followed by FF for 

60 epochs with reduced learning rate 1e-4 
Observation: Abysmal performance (< 10% test accuracy) for both experiments!
Conclusion: FF and BackProp have different objective functions that do not gel 
well together



Exp 3: CNN with FF

layers = [ 
    Convolutional_layer((28, 28, 1), 6, kernel_size = 5, padding=2), 
    MaxPool_layer(kernel_size=2, stride=2), 
    Flatten_layer(), 
    Convolutional_layer((14,14,6),16, kernel_size=5, padding =0), 
    MaxPool_layer(kernel_size=2, stride=2), 
    Flatten_layer(), 
    Linear_layer(400, 2000, device=device), 
    Linear_layer(2000, 2000, device=device) 
] 
net = Net(layers, 10)

Architecture



Exp 3: CNN with FF

Dataset: MNIST

Method: Train the network using FF for 1000 epochs with learning rate 
2e-2

Observation: Poor performance (10.75% test accuracy)

Conclusion: Our observation bolsters the view that CNN is not feasible 
with FF due to weight sharing



Exp 4: FF with Self-Attention

layers = [ 
    Attention_layer((28, 28, 1), 2000, 4), 
    Linear_layer(2000, 2000, device=device), 
    Linear_layer(2000, 2000, device=device), 
    Linear_layer(2000, 2000, device=device) 
  ] 

net = Net(layers, 10)

Architecture



Exp 4: FF with Self-Attention

Method: Train the network using FF for 60 epochs with learning rate 
1e-3 and 2e-2 for Attention and Linear layers respectively

Observation: Did not observe performance comparable to baseline FF 
(60%)

Conclusion: Label overlay method used in FF does not work well with 
networks emphasizing spatial locality



● Explore sample complexity for 
FF vs BackProp

● Try larger datasets such as 
GLD23k

Future WorkNext Steps
● Layer-wise parallelized 

implementation of FF
● Passing overlay 

information to Attention 
layer so that embeddings 
are well-formed


