
Forward-Forward :
Is it time to bid adieu to BackProp?

Sai Anuroop Kesanapalli
Shashank Rangarajan

Anukaran Jain
Avtaran Jain

“The Gradient Gangsters”

Goal

● To implement and study the Forward-Forward (FF) algorithm, and
compare it with the traditional back-propagation (BackProp)
framework

● Study the architectural differences of FF and BackProp and explore
new architectures

● Analyze system performance of FF and BackProp

● Every layer has its own
objective (goodness) function

● Layers are trained separately
● Gradients are computed
● No flow of gradients across

layers

BackPropFF
● There is a global objective

(loss) function
● Layers are trained jointly
● Gradients are computed
● Flow of gradients across

layers

Exp 1: Comparison of Baseline FF with BackProp

layers = [
 Linear_layer(28*28, 2000, device=device),
 Linear_layer(2000, 2000, device=device),
 Linear_layer(2000, 2000, device=device),
 Linear_layer(2000, 2000, device=device)
]
net = Net(layers, 10)

Net(
 (linear1): Linear(in_features=784, out_features=250, bias=True)
 (relu1): ReLU()
 (linear2): Linear(in_features=250, out_features=110, bias=True)
 (relu2): ReLU()
 (linear3): Linear(in_features=110, out_features=10, bias=True)
)

BackProp

FF

Test Accuracy (%)

Algo\Data MNIST Fashion
MNIST SVHN CIFAR 10 CIFAR 100

FF 97.14 85.47 64.93 46.13 10.33

BackProp 98.04 89.43 80.52 53.88 23.75

Exp 1: Comparison of Baseline FF with BackProp

Exp 1: Comparison of Baseline FF with BackProp

E2E Time (sec)

FF BackProp

Exp 1: Comparison of Baseline FF with BackProp

GPU Compute Time | CIFAR100

FF BackProp

Exp 1: Comparison of Baseline FF with BackProp

Memory Usage (%) | MNIST

FF BackProp

Exp 1: Comparison of Baseline FF with BackProp

Power Drawn (W) | MNIST

FF BackProp

Exp 2: Hybrid FF + BackProp

Dataset: MNIST
● Exp 2 a): Testing BackProp performance with FF as weight initializer
➡ Method: Train the network using FF for 60 epochs followed by BackProp for

20 epochs with reduced learning rate 1e-4
● Exp 2 b): Testing FF performance with BackProp as weight initializer
➡ Method: Train the network using BackProp for 20 epochs followed by FF for

60 epochs with reduced learning rate 1e-4
Observation: Abysmal performance (< 10% test accuracy) for both experiments!
Conclusion: FF and BackProp have different objective functions that do not gel
well together

Exp 3: CNN with FF

layers = [
 Convolutional_layer((28, 28, 1), 6, kernel_size = 5, padding=2),
 MaxPool_layer(kernel_size=2, stride=2),
 Flatten_layer(),
 Convolutional_layer((14,14,6),16, kernel_size=5, padding =0),
 MaxPool_layer(kernel_size=2, stride=2),
 Flatten_layer(),
 Linear_layer(400, 2000, device=device),
 Linear_layer(2000, 2000, device=device)
]
net = Net(layers, 10)

Architecture

Exp 3: CNN with FF

Dataset: MNIST

Method: Train the network using FF for 1000 epochs with learning rate
2e-2

Observation: Poor performance (10.75% test accuracy)

Conclusion: Our observation bolsters the view that CNN is not feasible
with FF due to weight sharing

Exp 4: FF with Self-Attention

layers = [
 Attention_layer((28, 28, 1), 2000, 4),
 Linear_layer(2000, 2000, device=device),
 Linear_layer(2000, 2000, device=device),
 Linear_layer(2000, 2000, device=device)
]

net = Net(layers, 10)

Architecture

Exp 4: FF with Self-Attention

Method: Train the network using FF for 60 epochs with learning rate
1e-3 and 2e-2 for Attention and Linear layers respectively

Observation: Did not observe performance comparable to baseline FF
(60%)

Conclusion: Label overlay method used in FF does not work well with
networks emphasizing spatial locality

● Explore sample complexity for
FF vs BackProp

● Try larger datasets such as
GLD23k

Future WorkNext Steps
● Layer-wise parallelized

implementation of FF
● Passing overlay

information to Attention
layer so that embeddings
are well-formed

