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1 Problem definition

Multimodal learning aims to create models that pro-
cess and relate information from multiple modal-
ities. Human communication is multimodal by
nature which limits the performance of unimodal
models. In this work, a shared encoder architecture
that is capable of fusing multimodal information
while providing better synergy between modali-
ties is compared to architectures that use separate
encoders.

To this end, we developed unimodal audio, uni-
modal video, and a multimodal pipeline that builds
on the former. We employ various classes of shared
encoders such as 2D CNNs comprising ResNet18
(7), GoogLeNet (15), and VGG16 (14); 3D CNNs
comprising Simple3D CNN, and I3D (4); and 2D
Vision Transformer (ViT) (6) and 3D Vision Trans-
former (VideoMAE) (16). We test our pipelines on
the task of emotion recogntion on full-scale version
of CREMA-D dataset (3) that contains 7442 videos
of actors expressing 6 kinds of emotions in various
intensities.

We present a principled comparison of the
performance of different pipelines and encoders,
identify the achievements and shortcomings of
these architectures, and discuss the implications
along with the possibilities for future work.

2 Literature Review

(2) provides architectures that have one encoder
tailored per modality. These are specific to voice
assistants on smart-watches that utilize accelerome-
ter readings and audio cues. We wish to use a com-
mon encoder rather than independent ones. (10)
leverages the benefits of complementary informa-
tion provided by different types of labels and de-
velop three ranking models based on SVM, DNN,
and GBDT. This direction is orthogonal to our ap-
proach, yet an interesting one to consider since their

task is emotion recognition as well. (11) proposes
one sensor fusion model that is designed for Radar
and Lidar data, both of which are vision in nature.
Moreover they employ a student-teacher frame-
work. Despite the differences, our work draws
inspiration from their sensor fusion pipeline, albeit
customized for audio-vision data in our case. (18)
proposes a method where normalization parameters
are exchanged between modes for implicit feature
alignment. However they too employ one encoder
per modality. Previous works have also leveraged
attention mechanisms for fusion. (5) presents a
simple modality-agnostic model by using self and
cross attention on images and text to learn a com-
mon embedding space. Using transformer archi-
tectures which utilizes attention mechanisms may
also be beneficial for our audio-vision task. (12)
proposes HighMMT, an architecture scalable with
modalities. Our pipelines share structural similar-
ities with HighMMT, albeit we employ multiple
classes of shared encoders, such as 2D CNN, 3D
CNN, and Transformer, rather than devising a cus-
tomized Transformer-based architecture.

3 Data Description

We utilize the Crowd Sourced Emotional Multi-
modal Actors Dataset (CREMA-D) (3) for our
work, offering a rich multimodal experience, in-
tegrating audio and video for enhanced emotion
analysis. Evaluated by over 2,400 individuals,
CREMA-D includes 7,442 video clips with per-
formances by 91 actors, providing a diverse explo-
ration of emotional expression. Within the dataset,
each actor presents 12 sentences, expressing 6 emo-
tions at different intensity levels. Each video clip is
brief, lasting less than 5 seconds. Importantly, the
dataset includes the number of ratings for each emo-
tion, offering valuable insights into the perceived
emotional content of the performances. Note: there
are 3 videos with recording issues which gives a
total of 7439 good videos.
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4 Method

Our architecture is visualized in Fig. 1. Videos
are pre-processed (Section 5) to generate frames
containing faces, Mel spectrograms, concatenated
if the pipeline is multimodal, along with addi-
tional processing depending on the architectural
requirements of the encoder, then passed-on to the
encoder which performs emotion recognition. The
type of concatenation, number of channels used
in the processed images, additional processing
such as generation of patches for ViT and temporal
alignment for 3D CNN and VideoMAE, vary
depending upon the encoder employed. This
architectural design draws inspiration from the
plug-and-play ideology, with shared encoder being
the changeable component.

5 Experiments & Results

5.1 2D Encoders

5.1.1 2D CNNs

ResNet18 (7), VGG16 (14), and GoogleNet (15)
are employed in this class of encoders. These
CNNs were chosen with regards to their number
of learnable parameters — GoogleNet (~ 7M),
ResNetl8 (~ 11.7M), VGG16 (~ 138M), which
provide us with a wide spectrum. This choice also
reflects the need for consideration into deployment
of this class of architectures on edge-devices in the
Internet of Things (IoT) era.

5.1.2 ViT

A simple ViT (6) is employed in this experiment.
This transformer accepts 1 input channel, has a
patch dimension of 16, dimensionality of token
embeddings is 768, has 6/8 transformer blocks,
4/8 attention heads, dimensionality of linear layer
is 1024, and includes an additional classification
token. This transformer has ~ 16.4M learnable pa-
rameters (with 6 transformer blocks and 4 attention
heads).

5.2 2D Experiments

For video preprocessing, frames were extracted
from videos and resized to 224 x 224 (Width x
Height) images. Of these, the middle frame was
chosen to perform face-detection using a Multi-
Task Cascaded Convolutional Neural Network
(MTCNN) (8), and the frame was then cropped
to the detected face. For audio preprocessing, au-
dio WAV files were extracted out of the video FLV
files, and Mel spectrograms were generated us-
ing librosa at a sample rate of 22, 050 Hz, 2048
FFT points, hop length of 512, and 512 Mel bands.
These spectrograms are then resized to 224 x 224
images. For some 2D CNNs in the unimodal and
multimodal pipelines, images (both faces and spec-
trograms) are converted to grayscale whereas for
the rest of the 2D CNNs and ViT pipelines, they re-
main multi-channeled. In the multimodal pipeline,
these faces and spectrogram images are concate-
nated horizontally to form a single chunk of multi-
modal data which is the passed-on to the encoder
employed in the pipeline (2D CNN, ViT) which
do further processing on this as per their architec-
tural requirements. Experiments have been con-
ducted on a full-scale version of the CREMA-D
datset, with a 70/30 train-test split that corresponds
to 5209 train samples, 2233 test samples, and 50
epochs. We note here that these include the 3 sam-
ples that had inherent recording errors.

5.3 2D Results

5.3.1 Unimodal Audio

Results are described in Table 1. We observe
that GoogLeNet performs better in comparison to
ResNetl8, VGGI16, and ViT in terms of test ac-
curacy. This is evident from the barplot in Figure
2a. We attribute this observation to quality of pre-
trained weights of VGG16 atop which we fine-tune
the model on Mel spectrograms. We believe ViT
performs a lot worse when compared to CNNs be-
cause of the patching scheme we employed which
is not ideal in the case of spectrograms.

5.3.2 Unimodal Vision

Results are described in Table 2. We observe
that VGG16 performs better in comparison to ViT,
ResNet18, and GoogLeNet in terms of test accu-
racy. This can also bee seen from the barplot in
Figure 2b.



5.3.3 Multimodal

Results are described in Table 3. We observe
that here too GoogleNet outperforms other 2D
encoders, as can be seen from the barplot in Figure
2c. Interestingly, although VGG16 performs better
than the rest in vision modality, it is not the case
in multimodal regime. Moreover, when compared
to unimodal case, test accuracies have improved
for ResNet18 and GoogleNet in the multimodal
scenario. However, VGG16 is seen to have taken
a hit in the accuracy in the multimodal scenario
when compared to the unimodal cases.

5.4 2D Discussion

2D CNNs: The classic CNNs — ResNetl8 (7),
VGG16 (14), and GoogLeNet (15) perform de-
cently on the test split, with Googl.eNet outper-
forming others in unimodal audio and multimodal
scenarios, and VGG16 doing the best in case of
unimodal vision. As expected, train accuracies of
these encoders are higher than their test accuracies,
indicating that these encoders are not generalizing
that well. Moreover it is observed that the differ-
ence in train and test accuracies varies considerably
across encoders. Surprisingly, VGG16 has a higher
test accuracy than train in the multimodal scenario.
Of the three modalities, audio accuracies are con-
siderably lower than the rest. This is probably due
to two reasons — much information regarding emo-
tion of the speaker is not contained in the audio
when compared to vision, and Mel spectrogram
conversion may be leading to loss of some infor-
mation.

ViT: Contrary to our initial guess, ViT does not
always perform better than 2D CNNs. In the audio
modality, it performs much worse when compared
to vision and multimodal scenarios. This is at-
tributed to patching scheme as mentioned earlier.
Even in case of unimodal vision and multimodal
scenarios, its performance is almost as a good as the
corresponding top performing 2D CNN. An expla-
nation for this lies in the observation that ViTs are
known to outperform CNNs, but only when trained
on large datasets (14-300M images), as mentioned
in (6). In our case, the entire dataset consists of
7442 video clips, and correspondingly those many
video frames as per our pre-processing scheme. For
training, as mentioned earlier in this section, this
number is 5209. However, we do note here that de-
spite this stark difference in the number of samples
required to train, ViT does perform comparably to

2D CNNSs, owing to its superior architecture involv-
ing attention mechanisms.

General Discussion: We tried different sets of
hyperparameters (Table 4) for each class of 2D en-
coders and modalities, such as batch size, learning
rate, dropout rate (in case of ViT), and reported
the best values obtained. We fixed training epochs
to 50, a convenient choice with regards to execu-
tion time, and one that also corresponds to a point
beyond which the test accuracy does not improve
further.

5.5 3D Encoders

We also look at 3D CNNs and Video Transformers
as shared encoders:

Simple3D CNN: A simple CNN that uses 6 con-
volutional layers followed by a final classifcation
layer. The purpose of this model is to serve as a
baseline for 3D performance.

I3D: (4) Uses a series of inception modules, where
each inception module is made up of several 3D
convolutional layers, followed by average pooling
over spatial and temporal dimensions to make a pre-
diction. This model is a one-stream RGB version
pretrained on ImageNet.

VideoMAE: (17) A masked autoencoder (MAE)
that extends to videos by using the vanilla ViT as
a backbone. It does this by masking random 3D
patches in videos as opposed to 2D patches found
in 2D MAEs. This model was pretrained on the
Kinetics dataset (9).

5.6 3D Experiments

Due to recording errors in the dataset, 3 videos
were removed resulting in a total of 7439 total
videos. The 3D experiments use the full 7439
videos and a randomly selected 80/20 train-test
split which gives a total of 5951 training and 1488
testing samples.

For video preprocessing, frames were extracted
from videos at 24 frames per second and resized
to 224 x 224 (Width x Height) images. For audio
preprocessing, mel spectrograms were created us-
ing audio files then converted to 3D. To convert to
3D, the mel spectrograms were evenly divided into
chunks along the time-axis. The number of chunks
they were divided into varied to match the num-
ber of frames extracted from their corresponding
video. This was done to temporally align frames



with spectrogram chunks. Mel spectrogram chunks
were then resized to 224 x 224 images. Frames and
spectrogram chunks retained RGB color channels.
In the end, we are left with arrays with dimen-
sions # of frames/chunks, color channels, width,
height, i.e., (# of frames/chunks, 3, 244, 244). Now
that frames and spectrogram chunks are temporally
aligned, they were concatenated together width-
wise to form the 3D multimodal data.

However, there are still two issues. Firstly, di-
mensionality mismatch in the video transformer as
they are commonly unable to handle rectangular
data. This is easily resolved by further resizing
video frames to 208 x 224 and spectrogram chunks
to 16 x 224 before concatenation. Secondly, an
issue of varying # of frames/chunks per array. This
is handled differently depending on architectures:

* 3D CNNs: Padding was used to resolve the
issue by concatenating blank images until all
arrays had the same # of frames/chunks as the
longest array (135).

* VideoMAE: Instead of padding, 32
frames/chunks were taken evenly spread
across the # of frames/chunks to maintain
good temporal fidelity while substantially low-
ering memory usage.

The final data dimensions look as follows:

CNNs Unimodal: (135, 3, 244, 244)
CNNs Multimodal: (135, 3, 488, 244)
VideoMAE Unimodal: (32, 3, 244, 244)
VideoMAE Multimodal: (32, 3, 244, 244)

5.7 3D Results

In addition to comparing 3D models against each
other, we will also compare them to human per-
formance. (3) provides human performance along
with the CREMA-D dataset for audio-only, vision-
only, and audio-vision emotion classification at
40.9%, 58.2% and 63.6% respectively.

5.7.1 Unimodal Audio

Both 3D CNN models outperformed humans on
unimodal audio emotion classification. Out of the
two models, I3D performed best as shown in Table
1. However, Simple3D is by far the smaller model
with only 3262 parameters compared to I3D with
12.3M parameters.

VideoMAE performs worse than Simple3D and
humans, but better than random guessing. This

is likely due to spatial redundancy which will be
elaborated in the 3D discussion section.

5.7.2 Unimodal Vision

Although Simple3D was unable to outperform hu-
mans in unimodal vision, I3D significantly does. It
is likely that the model was able to transfer learn
from ImageNet pretraining to boost unimodal vi-
sion performance.

VideoMAE was unable to do better than random
guessing performance. More on this in the 3D
discussion section.

5.7.3 Multimodal

Simple3D again is unable to outperform humans
in this case, however, it was able use multimodal
interaction to get a higher test accuracy compared
to any of its unimodal versions. 13D still performs
well and better than humans, but it does not do bet-
ter than its best unimodal variant (vision), which
could mean that classification is largely skewed by
vision. One simple way to check is to look at model
performance with modality ablation. These results
are represented as Ablated I3D. Results showed
a significant drop in performance when either vi-
sion 1 or when audio is removed. This suggests
that both modalities are important for I3D multi-
modal classification (i.e., likely no overly dominant
modality).

As for VideoMAE, because the multimodal re-
sults are similar to the unimodal audio, and because
it was randomly guessing on unimodal vision, it is
likely that audio is the completely dominant modal-

ity.
5.7.4 3D Discussion

Video Transformers: Although video transform-
ers show good results on other datasets like Ki-
netics, they struggle with spatial redundancy (13)
which Kinetics mitigates with diverse actions and
environments (9). Spatial redundancy is inherently
an issue with videos, but it is especially challenging
for facial emotion recognition where facial action
units may persist for the duration of the emotional
state which adds to spatial redundancy. In the fre-
quency domain, this is mitigated slightly, but still
not enough to give good predictions. Furthermore,
joint-space attention used in VideoMAE also scales
quadtratically with respect to both image size and
number of frames (1). Adding a small 3D CNN
model may help mitigate both issues.

A 3D CNN can be used to recognize important



temporal and spatial features. Not only would this
shrink image sizes and number of frames through
convolution and pooling, this may also solve the
spatial redundancy. Although adding a 3D CNN
adds to memory usage which is counter-intuitive to
saving memory, judging from the results in Table
3, a small 3D CNN like Simple3D with only 3K
parameters can already provide decent features.

3D CNNs: They good. Simple3D tiny model but
decent already.

Converting Audio to 3D: Might be a waste of
weights, but it does help with multimodal interac-
tion. Also worked well for small 3D CNN model
which gave better results than some large 2D mod-
els.

General Discussion: Hyperparameter tuning.
With hyperparameter tuning, probably much better
results.

5.8 2D vs3D

13D outperforms all encoders across all modalities,
except for GoogleNet in the case of unimodal au-
dio. A superior architecture composed of a series
of Inception modules (Section 5) is the key to its
performance. However, we observe from Tables
1, 2, and 3, it is not the norm that 3D encoders
work better than their 2D counterparts. This is evi-
dent, for example, from the performance of VGG16
which is better than Simple3D CNN and Ablated
I3D for vision modality, and Googl.eNet in case
of audio modality and multimodal data. This may
be a crucial factor while weighing-in the pros and
cons of using 2D vs 3D encoders, where the latter,
although give a better accuracy, are costlier to train
in terms of compute resources and time. 2D pre-
processing is comparatively cheaper computation-
wise when compared to 3D pre-processing, which
is a determining factor in making a choice between
2D and 3D encoders. Considering training time as
a proxy, ResNet18 takes about 8.33 minutes to train
on multimodal data for 50 epochs on an NVIDIA
Tesla P100 GPU accessed through USC CARC.
Whereas, a 3D encoder like I3D takes about 45
minutes per epoch to train on CARC. In scenarios
where these models are to be deployed on the edge,
2D encoders, CNNs especially, have an upper-hand
thus. However, where compute is not a constraint,
and for mission-critical applications with low tol-

erance for misclassifications, 3D encoders are an
ideal choice.

6 Conclusion & Future Work

We have successfully implemented the unimodal
and multimodal audio and vision pipelines with
2D CNN, 3D CNN, ViT, and VideoMAE as en-
coders. Moreover, we tested our pipelines on a
fullscale version of CREMA-D containing 7442
samples, and all the 6 emotion classes. For all the
pipelines and encoders, we tried different combi-
nations of hyper-parameters (in a non-exhaustive
manner), and identified the best modes of opera-
tion. We compared these pipelines against each
other in terms of their test accuracies, reasoned the
observed behavior, and analyzed the implications.

For future work, ViT architecture can be further
improved and trained on a much bigger dataset
to match the current state-of-the-art performance.
Patching of audio modality information encoded as
Mel spectrograms is not really an ideal choice. A
better thing to do is to replicate these spectrograms
across the patches and concatenate these replicated
spectrograms with the patched video frames. This,
we believe, will improve the performance of our
pipelines with ViT significantly. In the 3D pipeline,
adding a small 3D CNN may help mitigate spatial
redundancy in videos and also address joint-space
attention used in VideoMAE that scales quadtrati-
cally with respect to both image size and number
of frames. Finally, each experiment can be run mul-
tiple times and the averaged metrics of these set of
experiments along with error bars can be reported,
as a better practice.

7 Miscellaenous

Code-base hosted on GitHub (private) repository -
https://github.com/ksanu1998/multimodal_
course_project. Our experiments are available
as . ipynb notebooks and . py scripts accompanied
with README files and can be reproduced.
Please contact any of the team members for
access and information. I3D PyTorch implemen-
tation was taken from https://github.com/
piergiaj/pytorch-i3d/tree/master. ViT
PyTorch implementation was adapted from https:
//theaisummer.com/vision-transformer/.

8 Contributions

* Anuroop
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Figure 2: Comparison of accuracies of encoders for different modalities
Type Encoder Train Loss | Train Acc. | Test Loss | Test Acc.
ResNet18 1.06 0.8216 1.04 0.5825
2D CNN GoogLeNet 1.137 0.907 1.4209 0.619
VGG16 1.4038 0.6366 1.5259 0.5120
Simple3D CNN | 1.213 0.519 1.294 0.514
3D CNN 13D 0.991 0.623 1.022 0.605
Ablated I3D - - 2.707 0.448
T f ViT 1.7931 0.1634 1.7908 0.1738
FANSIOET ideoMAE 1.566 0.344 1512 0.372
Table 1: Unimodal audio metrics for different encoders
’ Type Encoder Train Loss | Train Acc. | Test Loss | Test Acc.
ResNet18 1.0687 0.8634 1.3649 0.6225
2D CNN GoogleNet 1.179 0.866 1.470 0.566
VGG16 1.0952 0.9495 1.3337 0.7040
Simple3D CNN | 1.160 0.546 1.417 0.462
3D CNN 13D 0.334 0.878 0.463 0.831
Ablated 13D - - 1.928 0.540
T f ViT 0.4378 0.8361 1.6823 0.5934
FANSIOTEr i deoMAE 1.795 0.170 1.790 0.188
Table 2: Unimodal vision metrics for different encoders
] Type Encoder Train Loss | Train Acc. | Test Loss | Test Acc.
ResNet18 1.1288 0.8854 1.4075 0.6350
2D CNN GooglLeNet 1.121 0.925 1.382 0.661
VGG16 1.6099 0.4329 1.5713 0.4716
Simple3D CNN | 0.918 0.647 1.169 0.573
3D CNN 13D 0.211 0.923 0.629 0.806
Transformer ViT 0.8365 0.6811 1.3221 0.5598
VideoMAE 1.575 0.334 1.513 0.366

Table 3: Multimodal metrics for different encoders



Encoder \ # (Train + test) \ bs \ 1r \ opt \ Loss \ ep \ dr \ GPU ‘

Simple3D(V) 27

Simple3D(A) 36 0

Simple3D(M 8 A100
3D CNN BD?A) M) | 5951 + 1488 0.001 5 10GB

13D(V) 9 0.5

13D(M) 4 16

ResNet18(A)

ResNet18(V) 0 0.0001

ResNet18(M) 0.001

GooglLeNet(A) | 5209

GoogleNet(V) |+ 16 | 0.0001 | Adam | CE - P100
2D CNN GooglLeNet(M) | 2233 50

VGG16(A) 0 0.001

VGG16(V) 0.00001

VGG16(M) 0.001

ViT(A) 16 0.4 | T4

ViT(V) 32 | 0.0001 0.2 | P100
Transformer VIT(M) 16 0.4 | T4

VideoMAE(A) 3 A100

VideoMAE(V) | 5951 + 1488 8 | 0.001 4 0.5 | 0GB

VideoMAE(M)

Table 4: Training setup

. Responsible for implementing unimodal
audio and vision, multimodal pipelines
with 2D CNN - ResNet18

. Midterm presentation deck and report

. Responsible for implementing unimodal
audio and vision, multimodal pipelines
with ViT, and for running the correspond-
ing full-scale experiments for unimodal
audio and multimodal pipelines

. Responsible for 2D data pre-processing
for full-scale experiments

. Midterm and Final presentation deck and
report — including barplots, analysis, and
discussion on 2D experiments

. Unimodal audio and vision pipelines
with 2D CNN - Googl.eNet

. Multimodal pipeline with 2D CNN -
GoogLeNet

. Fine tune GoogLeNet model on batch
size and learning rates, with best fit re-
sults, analysis and discussions

. Testing out ViT fullscale experiments
with different combinations of batch size,
heads, blocks, dropout rates and analysis.
. Midterm and Final report

e Aashi

1.

2.

5.

Unimodal audio and vision pipelines
with 2D CNN - VGG16

Mulitomodal pipeline with 2D CNN -
VGG16

. Fine-Tuning of VGG16 model, with best

fit results, analysis and discussions

. Testing out ViT fullscale experiments

with different combinations of batch size
and learning rates and analysis.
Midterm and Final report

¢ Wilson

1.

2.

Solely responsible for all of 3D parts
including: 3D data preprocessing, 3D
encoder training/testing (unimodal and
multimodal), 3D analysis and discussion,
etc.

Midterm and Final report

All team members have actively contributed to
the project. Furthermore, everyone contributed to
proof-reading both the presentation deck and the
report.



References

[1] BERTASIUS, G., WANG, H., AND TORRESANI, L.
Is space-time attention all you need for video under-
standing?, 2021.

[2] BuDDI, S. S., SARAWGI, U. O., HEERAMUN, T.,
SAWNHEY, K., YANOSIK, E., RATHINAM, S., AND
ADYA, S. Efficient multimodal neural networks for
trigger-less voice assistants, 2023.

[3] Cao, H., COOPER, D. G., KEUTMANN, M. K.,
GUR, R. C., NENKOVA, A., AND VERMA, R.
Crema-d: Crowd-sourced emotional multimodal ac-
tors dataset. IEEE transactions on affective comput-
ing 5,4 (2014), 377-390.

[4] CARREIRA, J., AND ZISSERMAN, A. Quo vadis,

action recognition? a new model and the kinetics
dataset, 2018.

[5] Dopps, E., CULPEPPER, J., HERDADE, S.,
ZHANG, Y., AND BOAKYE, K. Modality-agnostic
attention fusion for visual search with text feedback,
2020.

[6] DOSOVITSKIY, A., BEYER, L., KOLESNIKOV, A.,
WEISSENBORN, D., ZHAI, X., UNTERTHINER, T.,
DEHGHANI, M., MINDERER, M., HEIGOLD, G.,
GELLY, S., USZKOREIT, J., AND HOULSBY, N. An
image is worth 16x16 words: Transformers for image
recognition at scale. In International Conference on
Learning Representations (2021).

[71 HE, K., ZHANG, X., REN, S., AND SUN, J. Deep
residual learning for image recognition. In Proceed-
ings of the IEEE conference on computer vision and
pattern recognition (2016), pp. 770-778.

[8] JIANG, B., REN, Q., DAI F., XIONG, J., YANG,
J., AND GUI, G. Multi-task cascaded convolutional
neural networks for real-time dynamic face recogni-
tion method. In Communications, Signal Processing,
and Systems (Singapore, 2020), Q. Liang, X. Liu,
Z.Na, W. Wang, J. Mu, and B. Zhang, Eds., Springer
Singapore, pp. 59—66.

[9] KAY, W., CARREIRA, J., SIMONYAN, K., ZHANG,
B., HILLIER, C., VIJAYANARASIMHAN, S., VIOLA,
F., GREEN, T., BACK, T., NATSEV, P., SULEYMAN,
M., AND ZISSERMAN, A. The kinetics human ac-
tion video dataset, 2017.

[10] LEI, Y., AND CAO, H. Audio-visual emotion
recognition with preference learning based on in-
tended and multi-modal perceived labels. IEEE
Transactions on Affective Computing 14, 4 (2023),
2954-2969.

[11] L1, Y.-J., PARK, J., O’'TOOLE, M., AND KITANI,
K. Modality-agnostic learning for radar-lidar fusion
in vehicle detection. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recog-

nition (2022), pp. 918-927.

[12] L1ANG, P. P, Lyu, Y., FAN, X., Tsaw, J., LIU,
Y., Mo, S., YOGATAMA, D., MORENCY, L.-P.,
AND SALAKHUTDINOV, R. High-modality multi-
modal transformer: Quantifying modality & interac-
tion heterogeneity for high-modality representation
learning, 2023.

[13] SELvA, J., JOHANSEN, A. S., ESCALERA, S.,
NASROLLAHI, K., MOESLUND, T. B., AND
CLAPES, A. Video transformers: A survey. /IEEE
Transactions on Pattern Analysis and Machine Intel-
ligence (2023), 1-20.

[14] SIMONYAN, K., AND ZISSERMAN, A. Very deep
convolutional networks for large-scale image recog-
nition. arXiv preprint arXiv:1409.1556 (2014).

[15] SzZEGEDY, C., Liu, W., JIA, Y., SERMANET,
P., REED, S., ANGUELOV, D., ERHAN, D., VAN-
HOUCKE, V., AND RABINOVICH, A. Going deeper
with convolutions. In Proceedings of the IEEE con-
ference on computer vision and pattern recognition

(2015), pp. 1-9.

[16] TONG, Z., SONG, Y., WANG, J., AND WANG, L.
Videomae: Masked autoencoders are data-efficient
learners for self-supervised video pre-training. In
Advances in Neural Information Processing Systems
(2022), S. Koyejo, S. Mohamed, A. Agarwal, D. Bel-
grave, K. Cho, and A. Oh, Eds., vol. 35, Curran
Associates, Inc., pp. 10078-10093.

[17] TONG, Z., SONG, Y., WANG, J., AND WANG, L.
Videomae: Masked autoencoders are data-efficient
learners for self-supervised video pre-training, 2022.

[18] YIN, Y., XU, J., ZU, T., AND SOLEYMANI, M.
X-norm: Exchanging normalization parameters for
bimodal fusion. In Proceedings of the 2022 Interna-
tional Conference on Multimodal Interaction (2022),

pp- 605-614.



