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1 Problem definition

Multimodal learning aims to create models that pro-
cess and relate information from multiple modal-
ities. Human communication is multimodal by
nature which limits the performance of unimodal
models. In this work, a shared encoder architecture
that is capable of fusing multimodal information
while providing better synergy between modali-
ties is compared to architectures that use separate
encoders.

To this end, we developed unimodal audio, uni-
modal video, and a multimodal pipeline that builds
on the former. We employ various classes of shared
encoders such as 2D CNNs comprising ResNet18
(8), GoogLeNet (16), and VGG16 (15); 3D CNNs
comprising Simple3D CNN, and I3D (4); and 2D
Vision Transformer (ViT) (7) and 3D Vision Trans-
former (VideoMAE) (17). We test our pipelines on
the task of emotion recognition on full-scale ver-
sion of CREMA-D dataset (3) that contains 7442
videos of actors expressing 6 kinds of emotions in
various intensities.

We present a principled comparison of the
performance of different pipelines and encoders,
identify the achievements and shortcomings of
these architectures, and discuss the implications
along with the possibilities for future work.

2 Literature Review

(2) provides architectures that have one encoder
tailored per modality. These are specific to voice
assistants on smart-watches that utilize accelerome-
ter readings and audio cues. We wish to use a com-
mon encoder rather than independent ones. (11)
leverages the benefits of complementary informa-
tion provided by different types of labels and de-
velop three ranking models based on SVM, DNN,
and GBDT. This direction is orthogonal to our ap-
proach, yet an interesting one to consider since their

task is emotion recognition as well. (12) proposes
one sensor fusion model that is designed for Radar
and Lidar data, both of which are vision in nature.
Moreover they employ a student-teacher frame-
work. Despite the differences, our work draws
inspiration from their sensor fusion pipeline, albeit
customized for audio-vision data in our case. (20)
proposes a method where normalization parameters
are exchanged between modes for implicit feature
alignment. However they too employ one encoder
per modality. Previous works have also leveraged
attention mechanisms for fusion. (6) presents a
simple modality-agnostic model by using self and
cross attention on images and text to learn a com-
mon embedding space. Using transformer archi-
tectures which utilizes attention mechanisms may
also be beneficial for our audio-vision task. (13)
proposes HighMMT, an architecture scalable with
modalities. Our pipelines share structural similar-
ities with HighMMT, albeit we employ multiple
classes of shared encoders, such as 2D CNN, 3D
CNN, and Transformer, rather than devising a cus-
tomized Transformer-based architecture.

3 Data Description

We utilize the Crowd Sourced Emotional Multi-
modal Actors Dataset (CREMA-D) (3) for our
work, offering a rich multimodal experience, inte-
grating audio and video for enhanced emotion anal-
ysis. Evaluated by over 2400 individuals, CREMA-
D includes 7442 video clips with performances by
91 actors, providing a diverse exploration of emo-
tional expression. Within the dataset, each actor
presents 12 sentences, expressing 6 emotions at
different intensity levels. Each video clip is brief,
lasting less than 5 seconds. Importantly, the dataset
includes the number of ratings for each emotion,
offering valuable insights into the perceived emo-
tional content of the performances. We identified 3
videos with recording issues which gives a total of
7439 good videos.



Figure 1: Architecture

4 Method

Our architecture is visualized in Figure 1. Videos
are pre-processed (Section 5) to generate frames
and mel spectrograms. Frames and mel spec-
trograms are concatenated if the pipeline is
multimodal, followed with additional processing
depending on the architectural requirements of
the encoder. It is then passed-on to the encoder
which performs emotion recognition. The type
of concatenation, number of channels used in
the processed images, additional processing such
as generation of patches for ViT and temporal
alignment for 3D CNN and VideoMAE, vary
depending upon the encoder employed. This
architectural design draws inspiration from the
plug-and-play ideology, with shared encoder being
the changeable component.

5 Experiments & Results

5.1 2D Encoders

We first take a look at 2D CNNs and Vision Trans-
former (ViT) as shared encoders:

5.1.1 2D CNNs
ResNet18 (8), VGG16 (15), and GoogLeNet (16)
are employed in this class of encoders. These
CNNs were chosen with regards to their number
of learnable parameters – GoogLeNet (∼ 7M),
ResNet18 (∼ 11.7M), VGG16 (∼ 138M), which
provide us with a wide spectrum. This choice also
reflects the need for consideration into deployment
of this class of architectures on edge-devices in the
Internet of Things (IoT) era.

5.1.2 ViT
First, a simple ViT (7) trained from scratch on
CREMA-D is employed in this experiment. This
transformer accepts 1 input channel, has a patch
dimension of 16, dimensionality of token embed-
dings is 768, has 6/8 transformer blocks, 4/8 at-
tention heads, dimensionality of linear layer is

1024, and includes an additional classification to-
ken. This transformer has ∼ 16.4M learnable pa-
rameters (with 6 transformer blocks and 4 attention
heads). We then experimented with a ViT from
HuggingFace (19) pre-trained on ImageNet-21k
(5) at a resolution of 224× 224 pixels, referred to
as PT ViT hereafter.

5.2 2D Experiments

For video pre-processing, frames were extracted
from videos and resized to 224 × 224 (Width ×
Height) images. Of these, the middle frame was
chosen to perform face-detection using a Multi-
Task Cascaded Convolutional Neural Network
(MTCNN) (9), and the frame was then cropped
to the detected face. For audio pre-processing, mel
spectrograms were generated using librosa at a
sample rate of 22050 Hz, 2048 FFT points, hop
length of 512, and 128 mel bands. These spectro-
grams are then resized to 224 × 224 images. For
ResNet18 and ViT in the unimodal and multimodal
pipelines, images (both faces and spectrograms) are
converted to grayscale whereas for the rest of the
2D CNNs and PT ViT pipelines, they remain multi-
channeled (RGB). In the multimodal pipeline, these
faces and spectrogram images are concatenated hor-
izontally to form a single chunk of multimodal data
which is the passed-on to the encoder employed
in the pipeline (2D CNN, ViT) which do further
processing as per their architectural requirements.
Experiments have been conducted on a full-scale
version of the CREMA-D dataset with a 70/30
train-test split, where 10 samples have been dis-
carded as no face was detected in those, and 3 more
have been discarded as they contained recording
errors. This corresponds to a total of 5200 train
samples and 2229 test samples. Training epochs
were set to 50.

5.3 2D Results

5.3.1 Unimodal Audio
Results are described in Table 1. We observe that
all the 2D CNNs – ResNet18, GoogLeNet, and
VGG16, perform similarly in comparison to each
other, and better than 3D CNNs and Transformer-
based encoders in general. PT ViT is observed
to perform the best among this class of encoders.
This is evident from the barplot in Figure 2a. We
attribute this performance to the quality of pre-
trained weights of these 2D encoders atop which
we fine-tune using mel spectrograms. We believe



ViT trained from scratch performs worse when
compared to the other 2D encoders since only 5200
samples were used for training as mentioned ear-
lier.

5.3.2 Unimodal Vision
Results are described in Table 2. We observe that
ResNet18, GoogLeNet, VGG16, and PT ViT per-
form better in comparison to ViT. Here too PT ViT
outperforms 2D CNNs by a narrow margin. This
can be seen from the barplot in Figure 2b. We at-
tribute the poor performance of ViT to the same
reason mentioned in the unimodal audio scenario.

5.3.3 Multimodal
Results are described in Table 3. We observe here
that PT ViT outperforms other 2D encoders, as
can be seen from the barplot in Figure 2c. Among
2D CNNs, ResNet18 performs the best. Moreover,
when compared to unimodal vision, test accuracies
have improved slightly for ResNet18 in the multi-
modal scenario. A similar trend is seen for ViT and
PT ViT. Interestingly, ViT in multimodal scenario
is performing as good as the 2D CNNs, in contrast
to the unimodal audio and vision.

5.4 2D Discussion

2D CNNs: The classic CNNs – ResNet18 (8),
VGG16 (15), and GoogLeNet (16) perform de-
cently on the test split, with all the 2D CNNs having
similar performance in unimodal audio and vision
scenarios. Train accuracies of these encoders are
higher than their test accuracies. These encoders
are massively overparameterized and fine-tuned on
a considerably small dataset. However, this differ-
ence is not profound in case of unimodal vision and
multimodal regimes. Moreover it is observed that
the difference in train and test accuracies varies
considerably across encoders. Of the three modali-
ties, audio accuracies are lower than the rest. This
is probably due to two reasons – much information
regarding emotion of the speaker is not contained
in the audio when compared to vision, and mel
spectrogram conversion may be leading to loss of
some information.

ViT: The unimodal audio and vision performance
of ViT is worse when compared to multimodal
scenario. Contrary to our initial assumption, ViT
trained from scratch on CREMA-D does not always
perform better than 2D CNNs. An explanation for
this lies in the observation that ViTs are known

to outperform CNNs, but only when trained on
large datasets (14-300M images), as mentioned in
(7). In our case, the entire dataset consists of 7229
video clips (excluding errors), and correspondingly
those many video frames as per our pre-processing
scheme. For training, as mentioned earlier in this
section, this number is 5200. Despite this stark dif-
ference in the number of samples required to train
in order to outperform 2D CNNs, ViT does per-
form comparably to 2D CNNs in the multimodal
case, owing to its superior architecture involving
attention mechanisms – this demonstrates the bene-
fit of using a multimodal pipeline. PT ViT, which
is trained on ImageNet-21k consisting of 14M im-
ages, and fine-tuned on CREMA-D, is observed
to have performed best among 2D encoders. This
corroborates the aforementioned claim made by
(7), and points to the efficacy of using pre-trained
models fine-tuned on target dataset.

General Discussion: Considering training time
as a proxy, ResNet18 takes about 8.33 minutes
to train on multimodal data for 50 epochs on an
NVIDIA Tesla P100 GPU. We explored different
sets of hyperparameters (Table 4) for each class
of 2D encoders and modalities, such as batch size,
learning rate, dropout rate (in case of ViT), and
reported the values obtained that have converged
at the last epoch for these encoders, except for PT
ViT where we reported the best values. We fixed
training epochs to 50 (30 for PT ViT), a convenient
choice with regards to execution time, and ones
that also correspond to a point beyond which the
test accuracy does not improve further.

5.5 3D Encoders

We also look at 3D CNNs and Video Transformers
as shared encoders:

Simple3D CNN: A simple CNN that uses 6 3D
convolutional layers followed by a final classifca-
tion layer. The main purpose of this model is to
serve as a baseline for 3D performance.

I3D: (4) Uses a series of inception modules, where
each inception module is made up of several 3D
convolutional layers. For classification, it uses aver-
age pooling over spatial and temporal dimensions
to make a prediction. This model is a one-stream
RGB version pretrained on ImageNet 1K.



VideoMAE: (18) A masked autoencoder (MAE)
that extends to videos by using the vanilla ViT as
a backbone. It does this by masking random 3D
patches in videos as opposed to 2D patches found
in 2D MAEs. This model was pretrained on the
Kinetics400 dataset (10).

5.6 3D Experiments

Due to recording errors in the dataset, 3 videos
were removed resulting in a total of 7439 total
videos. The 3D experiments use the full 7439
videos and a randomly selected 80/20 train-test
split which gives a total of 5951 training and 1488
testing samples.

For video pre-processing, frames were extracted
from videos at 24 frames per second and resized
to 224 × 224 (Width × Height). For audio pre-
processing, mel spectrograms were created using
audio files then converted to 3D. To convert to
3D, the mel spectrograms were evenly divided into
chunks along the time-axis. The number of chunks
they were divided into varied to match the num-
ber of frames extracted from their corresponding
video. This was done to temporally align frames
with spectrogram chunks. Mel spectrogram chunks
were then resized to 224× 224. Frames and spec-
trogram chunks retained RGB color channels. Now
that frames and spectrogram chunks are temporally
aligned, they are concatenated together to form the
3D multimodal data.

However, there are still two issues. Firstly, the
implementation used for VideoMAE does not ac-
cept rectangular data which is an issue when frames
and spectrogram chunks are concatenated as they
are. This is easily resolved by further resizing video
frames to 208 × 224 and spectrogram chunks to
16× 224 before concatenation. Secondly, an issue
of varying number of frames/chunks per array. This
is handled differently depending on architectures:

• 3D CNNs: Padding was used to resolve the
uneven video length issue by adding blank
images until all arrays had the same number
of frames/chunks as the longest array (135).

• VideoMAE: Instead of padding, 32
frames/chunks were taken evenly spread
across the number of frames/chunks to main-
tain good temporal fidelity while substantially
lowering memory usage.

Following an NCWH format, the final data dimen-
sions look as follows:

CNNs Unimodal: (135, 3, 244, 244)

CNNs Multimodal: (135, 3, 244, 488)

VideoMAE Unimodal: (32, 3, 244, 244)

VideoMAE Multimodal: (32, 3, 244, 244)

Early termination is used during training. Early
termination was determined by monitoring model
performance every epoch for signs of convergence
or overfitting. The model with the best test accu-
racy was reported.

5.7 3D Results

In addition to comparing 3D models against each
other, we will also compare them to human per-
formance. (3) provides human performance on
the CREMA-D dataset for audio-only, vision-only,
and audio-vision emotion classification at 40.9%,
58.2% and 63.6% respectively.

5.7.1 Unimodal Audio
Results are shown in Table 1. Both 3D CNN mod-
els outperformed humans on unimodal audio emo-
tion classification. Out of the two models, I3D
performed better by ∼ 9%. However, Simple3D is
by far the smaller model with only 3262 parameters
compared to I3D with 12.3M parameters.

VideoMAE performs worse than Simple3D and
humans, but better than random guessing. This
is likely due to spatial redundancy which will be
elaborated in the 3D discussion section.

5.7.2 Unimodal Vision
Results are shown in Table 2. Although Simple3D
was unable to outperform humans in unimodal vi-
sion, I3D significantly does. It is likely that the
model was able to transfer learn from ImageNet
pretraining to boost unimodal vision performance.

VideoMAE still suffers from spatial redundancy
but even more so in the vision domain. More on
this in the 3D discussion section. It has similar per-
formance to random guessing which suggests that
VideoMAE was unable to learn anything useful.

5.7.3 Multimodal
Results are shown in Table 3. I3D still performs
well and better than humans, but it does not do bet-
ter than its unimodal vision variant, which could
mean that classification is largely skewed by vision.
One simple way to check is to look at model per-
formance with modality ablation. This is done by
masking a modality in the multimodal data. These
results are represented as Ablated I3D. Results



show a significant drop in performance when ei-
ther vision or audio is removed (Tables 1 and 2
respectively). This suggests that both modalities
are important for I3D multimodal classification and
there is no overly dominant modality.

Simple3D again is unable to outperform humans.
However, it was able use multimodal interaction to
get a higher test accuracy compared to any of its
unimodal versions. Judging from these results, it is
unlikely that there is an overly dominant modality
and that the model is truly learning multimodal in-
teractions. However, we still verify with modality
ablation. Comparing the multimodal Simple3D re-
sults with the Ablated Simple3D results shows that
the model is learning interactions between vision
and audio.

As for VideoMAE, because the multimodal re-
sults are similar to the unimodal audio, and because
it was randomly guessing on unimodal vision, it is
likely that audio is the completely dominant modal-
ity. In light of this, we chose to skip modality
ablation on VideoMAE.

5.7.4 3D Discussion
Video Transformers: Although video transform-
ers have good results on other datasets like Kinetics,
they struggle with spatial redundancy (14) which
Kinetics mitigates with diverse actions and envi-
ronments (10). Spatial redundancy is inherently an
issue with videos, but it is especially challenging
for facial emotion recognition where facial action
units may persist for the duration of the emotional
state. In the frequency domain, this is mitigated
slightly, but still not enough to give good predic-
tions. Furthermore, joint-space attention used in
VideoMAE scales quadtratically with respect to
both image size and number of frames (1). Adding
a small 3D CNN model may help mitigate both
issues.

A 3D CNN can be used to recognize important
temporal and spatial features. Not only would
this shrink the temporal and spatial dimensions
through convolution and pooling, this may also
mitigate some effects of spatial redundancy. Al-
though adding a 3D CNN adds to memory usage
which is counter-intuitive to saving memory, judg-
ing from the results in Table 3, a small 3D CNN
like Simple3D with only 3K parameters can al-
ready provide decent features. If an unmodified
video transformer that solely relies on attention
is used, considerable data pre-processing should
be done to address spatial redundancy for facial

emotion recognition.

3D CNNs: Both 3D CNN models show promising
results in terms of accuracy. I3D gave the most
accurate predictions, but the unimodal vision I3D
model suprisingly outperformed the multimodal
I3D variant. This is believed to be due to ImageNet
pretraining being more suited for unimodal vision.
Simple3D also had decent results in unimodal au-
dio and multimodal despite being a tiny model with
only 3262 parameters and no pretraining.

Furthermore, both models were able to learn
multimodal interactions. This is especially true for
the small Simple3D model which greatly benefited
from this in the multimodal experiment. This could
be attributed to dividing mel spectrograms along
the time dimension to temporally align vision and
audio. Converting audio to 3D might be a waste
of weights in some scenarios, but it does help with
multimodal interaction.

General Discussion: Although 3D models show
promising results, they have a caveat. They re-
quire 3D data which comes with expensive com-
putational resources. This is expanded upon in the
next section. As a result, all 3D models had little
to no hyperparameter tuning in these experiments
which would have only improved results.

Another thing of note is the ablated results. Ag-
nosticity was not the focus, but we briefly mention
it here. I3D showed that it can reasonably handle
missing modalities. It offers similar accuracies to
the unimodal ViT trained from scratch when vi-
sion is masked (Table 1) and when audio is masked
(Table 2). Simple3D exhibits similar agnostic prop-
erties, but it does not produce comparable results
to other models like I3D does.

5.8 2D vs 3D

I3D offers either the best or competitive perfor-
mance across all unimodal and multimodal experi-
ments (Tables 1, 2, 3), but it may not be suitable de-
pending on the task. 3D data inherently comes with
more costs compared to 2D such as longer training
/ inference times and higher memory. When re-
sources are not an issue, 3D encoders can offer bet-
ter performance. But in situations where resources
are limited, 2D encoders may be the better option.
We look at vision data for comparison. Video data
is downsampled to a single frame in 2D data com-
pared to extracting frames per second in 3D data.



In addition to this, 3D data requires padding if there
are unequal number of frames per video. Both rea-
sons enable 2D encoders to have significantly faster
processing times and lower memory constraints.

PT ViT had slightly better unimodal audio and
multimodal accuracies compared to I3D, but fell
behind in unimodal vision. However, it is a 2D
architecture and does not have the computational
costs that come with 3D data. Therefore, PT ViT
may be the better option in general. Furthermore,
2D vision transformers are more suitable for emo-
tion recognition compared to 3D vision transform-
ers. 2D vision transformers performed better and
had lower computational complexities, whereas the
3D vision transformers suffered from spatial redun-
dancy and had higher computational costs.

6 Conclusion & Future Work

We have successfully implemented the unimodal
and multimodal audio and vision pipelines with 2D
CNN, 3D CNN, ViT, and VideoMAE as encoders.
We tested our pipelines on a fullscale version of
CREMA-D containing 7442 samples, and all the 6
emotion classes. For 2D video pipelines, we per-
formed hyperparameter tuning (in a non-exhaustive
manner), and identified the best modes of operation.
We compared 2D and 3D pipelines against each
other in terms of their test accuracies, reasoned the
observed behavior, and analyzed the implications.

For future work, ViT architecture can be further
improved and trained on a much bigger dataset
to match the current state-of-the-art performance.
Patching of audio modality information encoded as
mel spectrograms is not really an ideal choice. A
better thing to do is to replicate these spectrograms
across the patches and concatenate these replicated
spectrograms with the patched video frames. This,
we believe, will improve the performance of our
pipelines with ViT significantly. In the 3D pipeline,
adding a small 3D CNN may help mitigate spatial
redundancy in videos and also address joint-space
attention memory constraints in VideoMAE. Fi-
nally, each experiment can be run multiple times
and the averaged metrics of these set of experi-
ments along with error bars can be reported, as a
better practice.

7 Contributions

• Anuroop
1. Implemented unimodal audio, vision,

and multimodal pipelines with ResNet18.

Other 2D CNN pipelines were modelled
on this pipeline.

2. Implemented unimodal audio, vision,
and multimodal pipelines with ViT. Per-
formed full-scale experiments for uni-
modal audio and multimodal modalities
on this pipeline.

3. Implemented 2D data pre-processing
scripts for full-scale experiments that
included spectrogram generation and
storage of pre-processed data in the
form of .npy files to avoid running pre-
processing stage for each experiment.

4. Implemented barplot generation script.
5. Fixed bugs in 2D data pre-processing

that increased performance in audio
modality especially.

6. Major contribution in preparing midterm
and final presentation decks.

7. Final report - Sections 2, 5.1 - 5.4, part
of 6.

• Riya

1. Implemented unimodal audio, vision,
and multimodal pipelines for GoogLeNet
and RGB images. Conducted full-scale
experiments for this pipeline with hyper-
parameter tuning on learning rates and
batch sizes.

2. Performed hyperparameter tuning on
full-scale ViT pipeline involving batch
size, heads, blocks, and dropout rates.

3. Customized ViT pipeline for RGB im-
ages on pre-trained ViT (PT ViT) from
HuggingFace. Conducted full-scale ex-
periments for unimodal audio, vision,
and multimodal for this pipeline.

4. Identified bugs in 2D experiments that
helped fix faulty 2D performances and
executed a rerun of the 2D experiments
for hyperparameter-tuned GoogLeNet,
ViT, and PT ViT with corrected note-
book.

5. Midterm and final report - Sections 3,
part of 6.

• Aashi

1. Implemented and fine-tuned unimodal
audio, vision, and multimodal pipelines
on subset data with VGG16.

2. Converted grayscale data to RGB images
for implementation. Further fine-tuned
the VGG16 model with best-fit results,



(a) Unimodal audio (b) Unimodal vision (c) Multimodal

Figure 2: Comparison of accuracies of encoders for different modalities

Type Encoder Train Loss Train Acc. Test Loss Test Acc.

2D CNN
ResNet18 1.0602 0.9848 1.4199 0.6182
GoogLeNet 1.1124 0.9344 1.4152 0.6244
VGG16 1.1326 0.9113 1.4438 0.5962

3D CNN
Simple3D 1.213 0.519 1.294 0.514
Ablated Simple3D - - 1.792 0.354
I3D 0.991 0.623 1.022 0.605
Ablated I3D - - 2.707 0.448

Transformer
ViT 1.3354 0.4710 1.4487 0.4401
Pretrained ViT 0.0545 0.9846 1.7709 0.6231
VideoMAE 1.566 0.344 1.512 0.372

Table 1: Unimodal audio metrics for different encoders

Type Encoder Train Loss Train Acc. Test Loss Test Acc.

2D CNN
ResNet18 1.0603 0.9848 1.3597 0.6815
GoogLeNet 1.1169 0.9275 1.3649 0.6742
VGG16 1.1049 0.9404 1.3641 0.6765

3D CNN
Simple3D 1.160 0.546 1.417 0.462
Ablated Simple3D - - 2.074 0.298
I3D 0.334 0.878 0.463 0.831
Ablated I3D - - 1.928 0.540

Transformer
ViT 0.6374 0.7612 1.6227 0.5536
Pretrained ViT 0.0453 0.9857 1.3825 0.6895
VideoMAE 1.795 0.170 1.790 0.188

Table 2: Unimodal vision metrics for different encoders

Type Encoder Train Loss Train Acc. Test Loss Test Acc.

2D CNN
ResNet18 1.1050 0.9379 1.3074 0.7326
GoogLeNet 1.1069 0.9390 1.3678 0.6711
VGG16 1.1081 0.9356 1.3785 0.6608

3D CNN
Simple3D 0.918 0.647 1.169 0.573
I3D 0.211 0.923 0.629 0.806

Transformer
ViT 0.5566 0.8002 1.0465 0.6909
Pretrained ViT 0.0397 0.9867 0.7543 0.8290
VideoMAE 1.575 0.334 1.513 0.366

Table 3: Multimodal metrics for different encoders



Class Encoder # (Train + test) bs lr optim Loss ep dr GPU

3D CNN

Simple3D(V)

5951 + 1488
8

0.001

Adam CE

27
0

A100
40GB

Simple3D(A)
36

Simple3D(M)
I3D(A) 5

0.5I3D(V) 9
I3D(M) 4 16

2D CNN

ResNet18(A)

5200 + 2229

32
0.0001

50

-

P100

ResNet18(V)
ResNet18(M) 0.001
GoogLeNet(A)

64 0.0001GoogLeNet(V)
GoogLeNet(M)
VGG16(A)

16
0.00001VGG16(V)

VGG16(M) 32

Transformer

ViT(A)
16

0.0001

0.4ViT(V)
ViT(M)
Pretrained ViT(A)

32
16

-Pretrained ViT(V)
Pretrained ViT(M) 21
VideoMAE(A)

5951 + 1488 8 0.001
3

0.5 A100
80GBVideoMAE(V)

4
VideoMAE(M)

Table 4: Training setup



analysis, and discussions.
3. Implemented and fine-tuned unimodal

audio, vision, and multimodal on full-
scale data pipelines with VGG16. Con-
verted grayscale to RGB and to fit the
NumPy arrays. Modelled those with fine-
tuning based on parameter changes in
learning rates and batch sizes.

4. Executed and fine-tuned the unimodal au-
dio, vision, and multimodal pipelines on
full-scale data with ResNet18 pre-trained
model to get the best possible results.

5. Executed a rerun of the 2D experiments
for ViT, ResNet18, and VGG16 with cor-
rected notebook.

6. Designed architecture diagram (Figure
1) for the project in final report on the
basis of Figure 3 in (13).

7. Midterm and final report - Sections 1, 4.
• Wilson

1. Solely responsible for all of 3D parts
including: 3D data pre-processing, 3D
encoder training/testing (unimodal and
multimodal), 3D analysis and discussion,
and modality ablations on CNN models.

2. Performed brief data cleaning on the raw
CREMA-D dataset which identified the
3 recording errors.

3. Identified bugs in 2D experiments that
helped fix faulty 2D performances.

4. Final report - Sections 2, 5.5 - 5.8.

All team members have actively contributed to
the project. Furthermore, everyone contributed to
proof-reading both the presentation decks and the
report.

8 Miscellaenous

Our experiments are available as .ipynb notebooks
and .py scripts accompanied with a README
file and can be reproduced. Code-base is hosted
on this GitHub repository – https://github.
com/ksanu1998/multimodal_course_project.
Other experiment resources are stored here –
https://drive.google.com/drive/folders/
1BhpgUDgbYwoTaTO6Yo8M3uR0Clw0bkiC?
usp=sharing and https://drive.
google.com/drive/folders/
1Q1LFiq2KZPyYTuEJhbQY38uu9FE0Jl-g?usp=
sharing. I3D PyTorch implementation was
taken from https://github.com/piergiaj/

pytorch-i3d/tree/master with a small mod-
ification to the forward method. ViT PyTorch
implementation was adapted from https:
//theaisummer.com/vision-transformer/.

https://github.com/ksanu1998/multimodal_course_project
https://github.com/ksanu1998/multimodal_course_project
https://drive.google.com/drive/folders/1BhpgUDgbYwoTaTO6Yo8M3uR0Clw0bkiC?usp=sharing
https://drive.google.com/drive/folders/1BhpgUDgbYwoTaTO6Yo8M3uR0Clw0bkiC?usp=sharing
https://drive.google.com/drive/folders/1BhpgUDgbYwoTaTO6Yo8M3uR0Clw0bkiC?usp=sharing
https://drive.google.com/drive/folders/1Q1LFiq2KZPyYTuEJhbQY38uu9FE0Jl-g?usp=sharing
https://drive.google.com/drive/folders/1Q1LFiq2KZPyYTuEJhbQY38uu9FE0Jl-g?usp=sharing
https://drive.google.com/drive/folders/1Q1LFiq2KZPyYTuEJhbQY38uu9FE0Jl-g?usp=sharing
https://drive.google.com/drive/folders/1Q1LFiq2KZPyYTuEJhbQY38uu9FE0Jl-g?usp=sharing
https://github.com/piergiaj/pytorch-i3d/tree/master
https://github.com/piergiaj/pytorch-i3d/tree/master
https://theaisummer.com/vision-transformer/
https://theaisummer.com/vision-transformer/
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