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Problem Definition

Multimodal learning aims to create models that process and relate
information from multiple modalities.

Human communication is multimodal by nature which limits the
performance of unimodal models.

A shared encoder architecture may be capable of fusing multimodal
information while providing better synergy between modalities
compared to architectures that use separate encoders.
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Background

Buddi et al. [2] provide architectures that have one encoder tailored
per modality. These are specific to voice assistants on smart-watches
that utilize accelerometer readings and audio cues. We wish to use a
common encoder rather than independent ones.

Lei et al. [10] leverage the benefits of complementary information
provided by different types of labels and develop three ranking models
based on SVM, DNN, and GBDT.This direction is orthogonal to our
approach, yet an interesting one to consider since their task is
emotion recognition as well.

Li et al. [11] propose one sensor fusion model that is designed for
Radar and Lidar data, both of which are visual in nature. Moreover
they employ a student-teacher framework. Despite the differences,
our work draws inspiration from their sensor fusion pipeline, albeit
customized for audio-visual data in our case.
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Background (cont’d.)

Yin et al. [20] propose a method where normalization parameters are
exchanged between modes for implicit feature alignment. However
they too employ one encoder per modality.

Liang et al. [12] propose HighMMT, an architecture scalable with
modalities. Our pipelines share structural similarities with HighMMT.
Albeit we employ multiple classes of shared encoders, such as 2D
CNN, 3D CNN, and Transformer, rather than devising a customized
Transformer-based architecture.
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Data

As a proof of concept, we wish to test this architecture for emotion
recognition on CREMA-D dataset [3], given its simplicity and aptness
for our bimodal use-case.

Evaluated by over 2, 400 individuals, CREMA-D includes 7, 442 video
clips with performances by 91 actors, providing a diverse exploration
of emotional expression. 7439 for 3D experiments.

Within the dataset, each actor presents 12 sentences, expressing 6
emotions at different intensity levels.

Each video clip is brief, lasting less than 5 seconds.
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Method
Architecture

Videos are pre-processed to generate frames containing faces, Mel
spectrograms, concatenated if the pipeline is multimodal, along with
additional processing depending on the architectural requirements of
the encoder, then passed-on to the encoder which performs emotion
recognition.
This architectural design draws inspiration from the plug-and-play
ideology, with shared encoder being the changeable component.
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Method
2D Experiments

For pre-processing, frames were extracted from videos and resized to
224× 224 images. Middle frame was chosen to perform
face-detection using a MTCNN, and the frame was then cropped to
the detected face.
For audio pre-processing, Mel spectrograms were generated using
librosa at a sample rate of 22, 050 Hz, 2048 FFT points, hop length
of 512, and 512 Mel bands. These spectrograms are then resized to
224× 224 images.
In the multimodal pipeline, these faces and spectrogram images are
concatenated horizontally to form a single chunk of multimodal data,
which is the passed-on to the encoder employed in the pipeline (2D
CNN, ViT).
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Method
3D Experiments

For pre-processing, Mel spectrograms were evenly divided into chunks
along the time-axis. The number of chunks they were divided into
varied to match the number of frames extracted from their
corresponding video. This was done to temporally align frames with
spectrogram chunks. Mel spectrogram chunks were then resized to
224× 224 images. These were used as the 3D unimodal vision and
audio data.
Now that frames and spectrogram chunks are temporally aligned,
they were horizontally concatenated together to form the 3D
multimodal data. After concatenation, each combined frame and
spectrogram chunk formed an image of size 448× 224.
For the 3D transformer multimodal data, video frames were further
resized to 208× 224 and spectrogram chunks were resized to
16× 224 before concatenation. After concatenation, they formed
images of size 224× 224.
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Results
Unimodal audio

Type Encoder Train
Acc.

Test
Acc.

2D CNN
ResNet18 0.8216 0.5825
GoogLeNet 0.907 0.619
VGG16 0.6366 0.5120

3D CNN
Simple3D
CNN

0.519 0.514

I3D 0.623 0.605
Ablated
I3D

- 0.448

Trans- ViT 0.1634 0.1738
former VideoMAE 0.344 0.372
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Results
Unimodal vision

Type Encoder Train
Acc.

Test
Acc.

2D CNN
ResNet18 0.8634 0.6225
GoogLeNet 0.866 0.566
VGG16 0.9495 0.7040

3D CNN
Simple3D
CNN

0.546 0.462

I3D 0.878 0.831
Ablated
I3D

- 0.540

Trans- ViT 0.8361 0.5934
former VideoMAE 0.170 0.188
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Results
Multimodal

Type Encoder Train
Acc.

Test
Acc.

2D CNN
ResNet18 0.8854 0.6350
GoogLeNet 0.925 0.661
VGG16 0.4329 0.4716

3D CNN
Simple3D
CNN

0.647 0.573

I3D 0.923 0.806

Trans- ViT 0.6811 0.5598
former VideoMAE 0.334 0.366
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Discussion
2D

CNNs:
1 The classic CNNs – ResNet18, VGG16, and GoogLeNet perform

decently on the test split, with GoogLeNet outperforming others in
unimodal audio and multimodal scenarios, and VGG16 doing the best
in case of unimodal vision.

2 Of the three modalities, audio accuracies are considerably lower than
the rest. This is probably due to two reasons – much information
regarding emotion of the speaker is not contained in the audio when
compared to vision, and Mel spectrogram conversion may be leading to
loss of some information.

ViT:
1 Contrary to our initial guess, ViT does not always perform better than

2D CNNs. An explanation for this lies in the observation that ViTs are
known to outperform CNNs, but only when trained on large datasets
(14-300M images).

2 In the audio modality, it performs much worse when compared to vision
and multimodal scenarios, owing to the patching scheme which is not
suitable for Mel spectrograms.
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Discussion
3D

Video Transformers:
1 Although video transformers show good results on other datasets like

Kinetics, they struggle with spatial redundancy which Kinetics
mitigates with diverse actions and environments.

2 Furthermore, joint-space attention used in VideoMAE scales
quadtratically with respect to both image size and number of frames.
Adding a small 3D CNN model may help mitigate both the issues.

3D CNNs: Simple3D CNN is a tiny model (3262 parameters) but
performs decent already.
Converting Audio to 3D:

1 Might be a waste of parameters, but it does help with multimodal
interaction.

2 Also worked well for small 3D CNN models which gave better results
than some large 2D CNN models.

3 Tuning hyperparameters would improve results.
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Discussion
2D vs 3D

I3D outperforms all encoders across all modalities, except for
GoogLeNet in the case of unimodal audio.
It is not the norm that 3D encoders work better than their 2D
counterparts.
In scenarios where these models are to be deployed on the edge, 2D
encoders have an upper-hand due to their faster data pre-processing
and training times. However where compute is not a constraint, and
for mission-critical applications with low tolerance for
misclassifications, 3D encoders are an ideal choice.
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Summary

Developed unimodal audio and vision, and multimodal emotion
recognition pipelines.

Employed various classes of shared encoders –

2D CNNs: ResNet18 (∼ 11.7M), GoogLeNet (∼ 7M), and VGG16
(∼ 138M)
3D CNNs: Simple3D CNN (3262), and I3D (∼ 12.3M)
Transformers: ViT (∼ 16.4M) and VideoMAE

Tested our pipelines on a full-scale version of CREMA-D dataset that
contains 7442 (7439) videos of actors expressing 6 kinds of emotions
in various intensities.

Presented a principled comparison of the performance of different
pipelines and encoders, identified the achievements and shortcomings
of these architectures, and discussed the implications along with the
possibilities for future work.
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Member Contributions

Anuroop
1 Responsible for implementing unimodal audio and vision, multimodal

pipelines with 2D CNN - ResNet18
2 Midterm presentation deck and report
3 Responsible for implementing unimodal audio and vision, multimodal

pipelines with ViT, and for running the corresponding full-scale
experiments for unimodal audio and multimodal pipelines

4 Responsible for 2D data pre-processing for full-scale experiments
5 Midterm and Final presentation deck and report – including barplots,

analysis, and discussion on 2D experiments

Riya
1 Unimodal audio and vision pipelines with 2D CNN - GoogLeNet
2 Multimodal pipeline with 2D CNN - GoogLeNet
3 Fine tune GoogLeNet model on batch size and learning rates, with best

fit results, analysis and discussions
4 Testing out ViT fullscale experiments with different combinations of

batch size, heads, blocks, dropout rates and analysis.
5 Midterm and Final report
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Member Contributions (cont’d.)

Aashi
1 Unimodal audio and vision pipelines with 2D CNN - VGG16
2 Mulitomodal pipeline with 2D CNN - VGG16
3 Fine-Tuning of VGG16 model, with best fit results, analysis and

discussions
4 Testing out ViT fullscale experiments with different combinations of

batch size and learning rates and analysis.
5 Midterm and Final report

Wilson
1 Solely responsible for all of 3D parts including: 3D data preprocessing,

3D encoder training/testing (unimodal and multimodal), 3D analysis
and discussion, etc.

2 Midterm and Final report
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Future Work

ViT architecture can be further improved and trained on a much
bigger dataset to match the current state-of-the-art performance.

Patching of audio modality information encoded as Mel spectrograms
is not really an ideal choice. A better thing to do is to replicate these
spectrograms across the patches and concatenate these replicated
spectrograms with the patched video frames.

In the 3D pipeline, adding a small 3D CNN may help mitigate spatial
redundancy in videos and also address joint-space attention used in
VideoMAE that scales quadtratically with respect to both image size
and number of frames.

Each experiment can be run multiple times and the averaged metrics
of these set of experiments along with error bars can be reported, as a
better practice.
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Thank you!
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