
44

Characterizing the Performance of Accelerated Jetson Edge
Devices for Training Deep Learning Models

PRASHANTHI S.K, SAI ANUROOP KESANAPALLI, and YOGESH SIMMHAN, Indian Institute
of Science, India

Deep Neural Networks (DNNs) have had a significant impact on domains like autonomous vehicles and
smart cities through low-latency inferencing on edge computing devices close to the data source. However,
DNN training on the edge is poorly explored. Techniques like federated learning and the growing capacity of
GPU-accelerated edge devices like NVIDIA Jetson motivate the need for a holistic characterization of DNN
training on the edge. Training DNNs is resource-intensive and can stress an edge’s GPU, CPU, memory and
storage capacities. Edge devices also have different resources compared to workstations and servers, such as
slower shared memory and diverse storage media. Here, we perform a principled study of DNN training on
individual devices of three contemporary Jetson device types: AGX Xavier, Xavier NX and Nano for three
diverse DNN model–dataset combinations. We vary device and training parameters such as I/O pipelining
and parallelism, storage media, mini-batch sizes and power modes, and examine their effect on CPU and GPU
utilization, fetch stalls, training time, energy usage, and variability. Our analysis exposes several resource
inter-dependencies and counter-intuitive insights, while also helping quantify known wisdom. Our rigorous
study can help tune the training performance on the edge, trade-off time and energy usage on constrained
devices, and even select an ideal edge hardware for a DNN workload, and, in future, extend to federated
learning too. As an illustration, we use these results to build a simple model to predict the training time and
energy per epoch for any given DNN across different power modes, with minimal additional profiling.

CCS Concepts: • Computer systems organization→ Embedded and cyber-physical systems; Parallel
architectures; • Computing methodologies→ Neural networks; Parallel computing methodologies.

Additional Key Words and Phrases: Edge accelerators, DNN training, Performance characterization

ACM Reference Format:
Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan. 2022. Characterizing the Performance of
Accelerated Jetson Edge Devices for Training Deep Learning Models. Proc. ACM Meas. Anal. Comput. Syst. 6, 3,
Article 44 (December 2022), 26 pages. https://doi.org/10.1145/3570604

1 INTRODUCTION
Motivation. Deep Neural Network (DNN) models are becoming ubiquitous in a variety of contempo-
rary domains such as Autonomous Vehicles [27], Smart cities [12] and Healthcare [23]. They help
drones to navigate, identify suspicious activities from safety cameras, and perform diagnostics over
medical imaging. Fast DNN inferencing close to the data source is enabled by a growing class of
accelerated edge devices such as NVIDIA Jetson and Google Coral which host low-power Graphics
Processing Units (GPUs) and Tensor Processing Units (TPUs) along with ARM CPUs in a compact
form-factor to offer a superior performance-to-energy ratio. E.g., the NVIDIA Jetson AGX Xavier

Authors’ address: Prashanthi S.K, prashanthis@iisc.ac.in; Sai Anuroop Kesanapalli, saiak@iisc.ac.in; Yogesh Simmhan,
simmhan@iisc.ac.in, Indian Institute of Science, Bengaluru, India, 560012.

Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee
provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored.
Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from permissions@acm.org.
© 2022 Association for Computing Machinery.
2476-1249/2022/12-ART44 $15.00
https://doi.org/10.1145/3570604

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

https://doi.org/10.1145/3570604
https://doi.org/10.1145/3570604

44:2 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

kit has a 512-core Volta GPU, an 8-core ARM CPU and 32𝐺𝐵 of LPDDR4x memory, that operates
within 65𝑊 of power, costs US$999 and is smaller than a paperback novel (see Table 1).

Recently, there has been a push towards training DNN models on the edge [10, 25, 48]. This
is driven by the massive growth in data collected from edge devices in Cyber-Physical Systems
(CPS) and Internet of Things (IoT), the need to refresh the models periodically, the bandwidth
constraints in moving all this data to Cloud data centers for training, and a heightened emphasis on
privacy by retaining data on the edge. This has led to techniques like federated and geo-distributed
learning [56] that train DNN models locally on data on an edge device and aggregate them centrally.

Gaps. The proliferation of DNN training has led to an increasing interest in scrutinizing the system
characteristics of such workloads to help identify bottlenecks, optimize the training parameters
and even to choose the machine configuration. However, this has been largely limited to evaluating
their performance on GPU-accelerated Cloud VMs and servers [34, 54], with minimal investigations
of edge accelerators. Profiling on the edge has been limited to inferencing workloads [4, 19].
Accelerated edge devices like NVIDIA’s Jetson series have unique characteristics such as low-

power usage, a slower RAM shared between GPU and CPU, support for diverse storage media
such as SD cards, eMMC and NVME SSDs, and the ability to dynamically configure the active CPU
cores and processor frequencies. So, understanding the performance characteristics and resource
inter-dependencies of accelerated edge devices for DNN training is essential to design efficient
DNN frameworks, optimize system resources for the constrained hardware, and schedule federated
learning intelligently. This can also help in making informed design choices on configuring edge
devices tailored for specific DNN training workloads, including federated learning in future.
Goals & Outcomes. In this paper, we address this gap in literature by conducting a principled

empirical study of three contemporary Jetson device types –AGXXavier, XavierNX andNano – by
training three popular DNNmodels using PyTorch under diverse system and training configurations.
We discern the impact of hardware resources such as the number of CPU cores, CPU/GPU/memory
frequency, storage media and power modes on the training time and energy usage. We also examine
how PyTorch settings such as the number of concurrent data loaders, and the DNN model and data
sizes, affect the performance. These are reported as a series of “take-aways” for practitioners to
tune their edge device and DNN framework, as well as systems researchers to help design systems
software for better performing and sustainable DNN training on the edge.

While some of our analyses confirm expected behavior with quantification, several other insights
are counter-intuitive. E.g., purchasing a faster and more expensive storage may not necessarily
improve the training speed if pipelining and caching are able to hide the GPU stalls; a slower and
cheaper hard disk could give the same performance. Similarly, a power mode with the highest GPU
frequency but a lower CPU frequency may not give benefits for smaller DNN models like LeNet
which are CPU bound due to pre-processing costs. As a practical utilization of our learning, we
train a simple linear-regression model to predict the expected training time and energy use for a
given DNN architecture with minimal profiling information.
Non-goals. This work focuses on training on a single Jetson edge device. We do not profile

network I/O, model parallelism or model aggregation that are required for distributed training
and/or federated learning. That said, characterizing the “local model” training on a single device is
a necessary step towards analyzing distributed workloads. Our article is limited to Jetson devices
as other edge accelerators like Movidius VPU and Coral TPU are too constrained for training. The
profiling approach we take here can serve as a template to study future accelerated edge devices.

Contributions. We make the following specific contributions in this article through a methodical
profiling of Jetson edge accelerators for training DNN models locally on a single device:

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:3

(1) We understand the effect of disk caching, pipelining and parallelizing data fetch and pre-
processing on the stall time and epoch training time, and the interplay between CPU and
GPU performance (Sec. 5.1).

(2) We study the impact of storage medium and mini-batch sizes on stalls, GPU compute time
and end-to-end times (Sec. 5.2, Sec. 5.3), and confirm the deterministic performance of these
devices across time and instances when training (Sec. 5.4).

(3) We investigate the consequence of Dynamic Voltage and Frequency Scaling (DVFS) and various
power modes on the training time, energy usage and their trade-off (Sec. 5.5, Sec. 5.6).

(4) Lastly, we use these results to train simple models to predict the epoch training time and the
energy usage per epoch of a given DNN for any power mode with limited profiling (Sec. 5.7).

These are preceded by a background on edge accelerators and training (Sec. 2), related work on
characterising DNNs on various platforms (Sec. 3) and details of our experiment setup (Sec. 4).

2 BACKGROUND ANDMOTIVATION
2.1 Edge Accelerators
NVIDIA Jetsons have become popular as accelerated edge devices due to having similar micro-
architectures as their widely-used workstation and server GPUs, albeit with fewer cores; and strong
software and SDK support to build ML applications. Jetson devices are available as accelerator
modules with CPU, GPU andmemory for industries that build custom hardware (e.g., on self-driving
cars), or as developer kits where the modules are coupled with NVIDIA’s reference carrier board
to form a fully working edge system for evaluation. These devices are becoming more powerful
over time, even as they offer a low power envelope and a compact form-factor [48]. E.g., NVIDIA’s
latest edge-accelerator kit, AGX Orin, released in April 2022, delivers a theoretical 275 TOPS of
performance and features a 12-core ARM Cortex A78AE CPU, an Ampere GPU with 2048 CUDA
cores and 64 tensor cores, and 32𝐺𝐵 of shared RAM. These are comparable to an RTX 3080 Ti
workstation GPU, but with a power consumption of ≤ 60𝑊 and no larger than a paperback novel.
Therefore, these accelerators are competitive candidates for running DNN training workloads.

These edge devices have several unique features that warrant a careful study for training:
• The RAM is shared between the CPU and GPU, unlike in workstation/server GPUs which
have a dedicated RAM. This increases the amount of memory available to the GPU, but brings
in the interplay between the memory used by CPU and GPU for the model, dataset, cache,
etc. Also, the LPDDR RAM used in these devices is slower and low-powered, as opposed to
GDDR that is used in regular GPUs.

• Edge devices offer several inbuilt and user-defined power modes, each with different cores,
CPU frequency, GPU frequency and memory frequency. This offers a large parameter space
(> 29𝑘 combinations for AGX) with interesting power–performance trade-offs. A close
understanding of these trade-offs can help select power modes that, say, reduce over-heating
of an edge by using a low-power mode while still meeting a training time budget.

• They support a wide variety of storage media including eMMC, Micro SD card, NVME
Solid State Drive (SSD), Hard Disk Drive (HDD), which have different I/O performance and
monetary costs. These can affect I/O intensive workloads like DNN training.

Two other prominent edge accelerators are Google Coral [16] and Intel Movidius Neural Compute
Stick (NCS) [21]. Coral features Google’s Edge TPU accelerator for inferencing, and is available as a
developer board and a USB accelerator that is connected to a host such as Raspberry Pi. Movidius
uses the Intel Myriad X Vision Processing Unit (VPU) as an accelerator and is available as a USB
stick. Both these devices are intended for inferencing with an extremely low power budget. They
also offer limited memory. E.g., the Coral board’s TPU has an on-chip memory of just 8𝑀𝐵 and

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:4 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

Disk Shared Memory

CPU

Pre-Process Kernel
Launch

Fetch

Model data

GPU

Fig. 1. DNN training stages using PyTorch on the Edge

an off-chip memory of 1–4𝐺𝐵, and operates within 2𝑊 [15]. Additionally, Movidius’s OpenVINO
software development kit does not allow training. Given these constraints, it is not practical to
perform DNN training on them, and we limit our study to more capable Jetson edge devices.

2.2 DNN Training
DNN training happens iteratively (Fig. 1). In each iteration, we fetch a “mini-batch” of samples from
disk to memory, and perform pre-processing on the mini-batch, such as deserialization, cropping,
resize, flipping and normalization of the input images using the CPU. Then, the CPU launches
kernels on the GPU to perform the forward and backward passes of training. This repeats for
the next mini-batch and so on until all the input samples are consumed. This forms one epoch of
training. Epochs are repeated using different mini-batch samplings till the model converges.

Fetching a mini-batch from disk is I/O intensive, pre-processing is CPU intensive and the training
is GPU intensive. Since the GPU is often the bottleneck during overall training, the goal is usually to
maximize the GPU utilization to reduce the end-to-end training time. Performing these three stages
sequentially will cause the GPU to remain idle while it waits for the disk and CPU to finish fetching
and pre-processing a mini-batch. PyTorch’s DataLoader and input pipelines constructed from
TensorFlow’s tf.data API help pipeline the fetch and pre-process stages with the compute stage.

PyTorch has emerged as a popular DNN framework because of its ease of use as compared to
TensorFlow, and more pre-trained models being available [3]. Hence, we conduct our study using
PyTorch. DNN training in PyTorch can be pipelined across the fetch and pre-processing stages, and
the GPU compute stage. While the first two stages are executed sequentially by a single worker
process, i.e., not pipelined, the latter can be executed in a pipelined manner by a separate process.
The fetch and pre-process stages can also be parallelized to operate on multiple mini-batches so that
a fast GPU does not have to wait, or “stall”, for a mini-batch to be ready. The CPU is responsible for
loading DNN kernels needed for the forward and backward pass to the GPU. If the CPU is unable
to launch the kernels in time, the GPU stalls.

3 RELATEDWORK
There is growing interest in training DNNs on the edge and it offers several systems research chal-
lenges [48]. However, there is a lack of rigorous empirical studies to characterize their performance
and the specific challenges in effectively leveraging them. We address this gap in this paper.
Liu et al. [29] examine DNN training workloads on the Jetson TX2 with respect to memory,

CPU/GPU utilization and power consumption. They also correlate the analysis to lower level
operations in DNN models. However, they do not experiment with varying power modes and
framework configurations as we do, and the TX2 is an older architecture. The Flower federated
learning framework [6] supports heterogeneous environments including edge devices. They present
results of deploying Flower on virtual Android devices and on Jetson TX2 edge accelerators.
However, the edge is just a validation platform in their work and they do not offer any detailed
analysis of the performance of the edge for training.
There exists literature on evaluating edge devices for model inferencing. DeepEdgeBench [4]

compares the inference time and power consumption for edge devices such as NVIDIA Jetson Nano,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:5

Google Coral and Raspberry Pi 4 for MobileNet v2 but training is not considered. Others [17] study
Jetson TX1 and TK1 using roofline models for both the CPU and GPU with a matrix multiplication
as the workload. While important, matrix multiplication is limited to the GPU. The training pipeline
is I/O intensive and exercises disk, memory, CPU and GPU. We study this holistically.
MLPerf [33] is a community effort to provide a uniform framework for quantifying the perfor-

mance of ML Hardware and Systems. The benchmark suite spans a number of application domains
and datasets, and prescribes a quality threshold that must be met by any implementation. While
such a suite is essential for measuring the overall impact of systems or optimizations on training, it
does not measure low-level system metrics like the IO reads. MLPerf also lacks a training suite for
edge devices. We adopt a similar training benchmark in our study, which is viable on edge devices.

There has also been specific attention on the energy usage and variability of edge devices. Holly,
et al. [19] correlate CPU and GPU frequencies and the number of CPU cores with the latency,
power and energy for inferening on the Jetson Nano. Some [2] examine the effect of these on power
consumption for stream processing workloads. We focus on the impact of such configurations,
including storage media and DNN framework settings, on the end-to-end time and energy consumed
for DNN training workloads on the Jetson AGX Xavier. Snowflakes [1] reports a detailed study
on the latency and power variability observed across Jetson AGX Xaviers for inferencing. We too
evaluate the variability, but for a training workload and we do not observe any variability.

There is a larger body of work on training on GPU workstations and servers. Mohan, et al. [34]
characterize the training data pipeline and how it affects training time on desktop GPUs. They
also analyze the effect of the OS page cache on data access. However, their study only considers
server-grade GPUs which are much more powerful and have exclusive and faster GPU RAM when
compared to edge devices. They also propose a modified caching mechanism that minimises I/O
caused by thrashing. Once the page cache is full, all further accesses are sent to disk without
evicting existing data in the cache. Quiver [26] proposes a caching strategy based on substitutability.
Accesses that cause a miss in the cache are substituted with other data that are present in the cache
without interfering with training requirements and single access per epoch. Our detailed study and
analysis can help design such optimization strategies for training on edge accelerators.
Lastly, our paper enables accurate modeling of DNN training time and energy usage for the

diverse power modes of these devices. This is key for federated learning when devices in a training
round need to complete at about the same time [7]. Current techniques use simple approximations
like over-sampling of devices [7]. We provide initial promising results in this direction.

4 EXPERIMENT SETUP
4.1 Hardware Platform
We perform our experiments on three contemporary classes of NVIDIA Jetson developer kits: AGX
Xavier [35], Xavier NX [37] and Nano [36] (for convenience, we refer to the devices by the names
highlighted in bold). We use five devices of each type in our experiments. Orin AGX [42], released
in April 2022, was available in the market just recently and we offer some early results on it. The
specifications of the devices are given in Table 1.
Briefly, the Nano has 4 ARM A57 CPU cores at a peak frequency of 1.479𝐺𝐻𝑧 and a Maxwell

GPU with 128 CUDA cores at a peak frequency of 921𝑀𝐻𝑧. It has 4𝐺𝐵 of shared LPDDR RAM – a
low-power but slower variant of GDDR – a peak power of 10𝑊 and costs US$ 129. The NX, a more
powerful variant, comes with 6 Carmel cores at a peak frequency of 1.9𝐺𝐻𝑧 in dual-core mode
and a Volta GPU with 384 CUDA cores and 48 tensor cores. It has 8𝐺𝐵 of shared LPDDR RAM, a
peak power of 15𝑊 and costs US$ 399. The AGX uses NVIDIA’s custom Carmel ARM CPU with 8
cores, along with a Volta GPU with 512 CUDA cores. It has 32𝐺𝐵 of shared LPDDR RAM and a list

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:6 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

Table 1. Specifications of NVIDIA Jetson Devices Evaluated

Feature Nano [38] Xavier NX [39] AGX Xavier [39] AGX Orin [40]

ARM CPU Architecture A57 Carmel Carmel A78AE
CPU Cores† 4 6 8 12
CPU Frequency (MHz)† 1479 1900 2265 2200
GPU Architecture Maxwell Volta Volta Ampere
CUDA/Tensor Cores 128/– 384/48 512/64 2048/64
GPU Frequency (MHz)† 921 1100 1377 1300
RAM (GB) 4 8 32 32

Storage Interfaces 𝜇SD, USB 𝜇SD, NVMe, USB 𝜇SD, eMMC, eSATA,
NVMe, USB

𝜇SD, eMMC,
NVMe, USB

Memory Frequency
(MHz)† 1600 1600 2133 3200

Power (W)† 10 15∗ 65# 60
Price (USD) $129 $399 $999 $1999
† This is the maximum possible value across all power modes. Actual value depends on the power mode used
(Table 3). ∗ This peak power is for Jetpack release 𝑣4.5.1 and earlier. # The data sheet does not list the power
for the MAXN peak power mode. We report the power adapter rating of 65𝑊 .

price of US$ 999. Orin features a 12-core ARM Cortex A78AE, an Ampere GPU with 2048 CUDA
cores and 64 tensor cores and 32𝐺𝐵 of shared LPDDR RAM, with a peak power of 60𝑊 . It sells for
US$ 1999. The RAM is shared between CPU and GPU on all these classes of devices.
These edge devices offer interfaces to different storage media. The Nano supports a Micro SD

card and a USB HDD. The NX supports a Micro SD card, USB HDD and M.2 NVME SSD. The AGX
and Orin come with an eMMC (flash based) storage and support a Micro SD card, HDD over USB,
and M.2 NVME SSD. AGX also supports HDD over eSATA.
In our experiments, the OS and platform binaries are installed on the eMMC for the AGX and

Orin, and on the Micro SD card for the NX and Nano. Since training can be I/O intensive, we
perform experiments by hosting the training data on three different storage media – SSD over an
NVMe/PCIe interface, HDD over a USB 3.0 interface, and SD card. We use a 64𝐺𝐵 Samsung EVO Plus
Micro SD card, a 250𝐺𝐵 M.2 NVME Samsung SSD 980, and a 1𝑇𝐵 Western Digital My Passport
HDD over USB. The peak sequential read speeds from their datasheets are 3.5𝐺𝐵𝑝𝑠 for the SSD,
1.05𝐺𝐵𝑝𝑠 for the HDD, and 100𝑀𝐵𝑝𝑠 for the SD card.

4.2 Software Platform
All 15 devices of the AGX, NX and Nano run Linux for Tegra (L4T) 𝑣32.5.1 with 𝑣4.9.201-tegra
kernel. They have CUDA 𝑣10.2 with Jetpack 𝑣4.5.1. We use PyTorch 𝑣1.8 and Torchvision 𝑣0.9 as
the DNN training framework. However, Orin requires a more recent OS and library version: CUDA
𝑣11.2, Jetpack 𝑣5.0.1 running on L4T 𝑣34.1.1, Pytorch 𝑣1.12 and Torchvision 𝑣0.13.

We use the PyTorch framework for training [44] with the Dataloader [46] to fetch and pre-
process data. We use the num_workers flag to vary the number of fetch and pre-process workers.
When num_workers=0, a single process performs fetch, pre-process and GPU compute sequen-
tially, without pipelining. When num_workers ≥ 1, PyTorch spins up that many processes for
fetch/pre-process, each operating on a different batch of data in parallel, and a separate process
invokes the GPU compute on each pre-processed batch sequentially. This forms a two-stage pipeline
of fetch/pre-process followed by compute.

4.3 DNN Models and Datasets
We chose three DNNmodels for computer vision for our training experiments – LeNet-5, MobileNet
v3 and ResNet-18. This was based on their popularity observed from our survey of around 60

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:7

Table 2. DNN Models, Training Datasets and Device Trained On

Model # Layers # Params Mem.
Used [8] FLOPs Dataset # Train.

Samples
Size on

Disk
Batch
Size AGX NX Nano

LeNet-5 7 [28] 60𝑘 [28] 0.35𝑀𝐵 4.4𝑀 [13] MNIST 60, 000 [28] 46𝑀𝐵 16 ✓ ✓ ✓
MobileNet v3 20 [20] 5.48𝑀 [43] 124.73𝑀𝐵 225.4𝑀 [43] GLD23k 23, 080 [52] 2827𝑀𝐵 16 ✓ ✓
ResNet-18 18 [18] 11.68𝑀 [51] 53.89𝑀𝐵 1.82𝐺 [51] CIFAR-10 50, 000 [24] 150𝑀𝐵 16 ✓

VGG-11 11 [50] 132.86𝑀 [51] 509.78𝑀𝐵 7.63𝐺 [51] CIFAR-10 —”— —”— —”— ✓

edge and federated learning research papers. These provide a variety of DNN architectures and
computational footprints, as shown in Table 2.
We investigated the MLPerf community benchmark as an evaluation suite [33]. However, they

do not have workloads for edge training but only for edge inferencing and for workstation/server
training. Additionally, the benchmark only reports coarse-grained metrics such as inference latency
and time-to-train, but not other metrics such as stall time, compute time, IOPS, etc. We pick similar
but smaller DNN models as the vision area of MLPerf, e.g., ResNet-18 instead of ResNet-50.

LeNet is one of the earliest and simplest Convolutional Neural Network (CNN) models designed
to recognize handwritten digits, 0–9, for Optical Character Recognition (OCR). We train the LeNet-5
DNN [28] on the MNIST [28] dataset. It consists of 60, 000 training and 10, 000 test images, each of
which is a 28 × 28 grayscale image of a handwritten digit in the class 0–9. Google’s MobileNet [20]
is a lightweight model intended for vision-based applications on mobile devices. We use images
from the Google Landmarks Dataset v2 (GLD-23k) [55] to train MobileNet-v3 over 23, 080 images of
human-made and natural landmarks, divided into 203 classes, with a total size on disk of 2.8 𝐺𝐵.
Residual Neural Network (ResNet) is a class of CNNs that are used for vision-based applications.
CIFAR-10 [24] is used to train the ResNet-18 DNN. It has 50, 000 training and 10, 000 test images.
The size of the training files with 50𝑘 images is 150𝑀𝐵. Additionally, we use VGG11 [50], a popular
CNN, with the CIFAR-10 dataset to validate the epoch-time prediction model we train in Sec. 5.7.
Not all models fit within the available memory of all edge devices. Each model is trained only on the
devices that have sufficient memory for training, as indicated in Table 2. For instance, ResNet-18
is trained only on the AGX because both the NX and the Nano run out of memory. Since AGX
supports all models and datasets evaluated, and it is a newer hardware platform, some of our
experiments drill-down into the AGX as a canonical edge accelerator.

4.4 Default Configuration
We use the following default configurations in our experiments based on best practices from
literature [1, 2], unless stated otherwise. The default power mode is the highest rated for all devices:
MAXN for the AGX and Nano, and 15𝑊 for NX (modes 𝑔,𝑀𝐴𝑋𝑁 and 15𝑊 in Table 3). DVFS is
turned off. The fan speed is set to maximum to avoid resource throttling due to overheating. By
default, we store the training data on SSD for the AGX and NX, and on SD card for the Nano. In
experiments where we need the same storage media type across all three device classes, we use
HDD over USB for the training data as it is present on all.
The prefetch factor in PyTorch DataLoader is set to its default value of 2. The number of

worker processes in the DataLoader is set to𝑤 = 4, for reasons discussed in Sec. 5.1. Previous
works [9, 14, 49] have shown that large mini-batch sizes adversely affect convergence and therefore
we use amini-batch size of𝑏𝑠 = 16 images when training, as this is a small mini-batch size commonly
used across models. The learning rate and momentum are set to 0.01 and 0.9 respectively [11]. We
use Stochastic Gradient Descent (SGD) as the optimizer, and cross-entropy as the loss function. We
clear the page cache at the start of every experiment run to avoid any cross-experiment effects, but
it is retained across epochs within a single training run.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:8 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

In each experiment, we train the DNN models for 6 epochs. As we show in Section 5.4 for a 15ℎ
run, this is adequate to understand and generalize the performance behavior when training till
convergence. Also, for some configurations, each epoch takes 90𝑚𝑖𝑛𝑠 . We do not include a testing
phase in our experiments as we are not training till convergence. By default, we report the results
averaged over epochs 1–5 since epoch 0 has bootstrapping overheads, as discussed in Sec. 5.1.

4.5 Performance Metrics
We use a variety of Linux system utilities to monitor and report system resource usage. CPU, GPU
and RAM utilization, and average and instantaneous power are measured using the jtop Python
module, which internally uses the tegrastats [41] utility from NVIDIA, at ≈ 1 𝑠 sampling. The
power measurements are from on-board sensors in the Jetsons, which capture the power load from
the module but not the carrier board and peripherals. The socket load can be captured by using
an external power monitor, which we use for baseload studies. However, the bulk of the variation
in the energy usage during training is from the module load. So the module load reported by the
on-board sensors are used in our analysis, unless noted otherwise.
The sampling interval deviates by up to 200 𝑚𝑠 due to delays introduced by the rest of the

monitoring harness, e.g., iostat takes 1𝑠 when run periodically. So the total energy for training
in a duration 𝑇 is calculated as a sum of the instantaneous power (𝑝𝑡𝑖 in watts) measured at time 𝑡𝑖 ,
weighted by the duration between successive samples (𝑡𝑖 − 𝑡𝑖−1), given as

∑
𝑡𝑖 ∈𝑇

(
𝑝𝑡𝑖 · (𝑡𝑖 − 𝑡𝑖−1)

)
. The

read IOPS and bytes read per second (throughput) are measured using iostat [30]. The fraction of
the dataset that is present in the Linux (in-memory) disk cache is measured using vmtouch [31].
Additionally, we measure the fetch stall time and the GPU compute time for every mini-batch.

Fetch stall time is the visible time taken to fetch and pre-process data, and does not overlap with the
GPU compute time, i.e., max((fetch time + pre-process time − GPU compute time), 0). GPU compute
time is the time taken by the mini-batch to execute the training on the GPU. It includes the kernel
launch time, and the forward and backward passes of training. We measure these times using the
torch.cuda.event with the synchronize option so that time captured is accurate [47].
We sum the fetch stall and GPU compute times over all mini-batches in an epoch to obtain

their average time per epoch. We also measure and report the End-to-End (E2E) time to process all
mini-batches of each epoch, including the fetch stall time, GPU compute time and any framework
overheads. We have performedmultiple runs for the different experiments and they are reproducible.
We report results from a representative run.

5 RESULTS AND ANALYSIS
We attempt to understand the impact of various hardware resource choices, hardware and OS
configurations, and training platform configurations on the time taken and energy consumed for
training the candidate DNN models on the edge devices. Specifically, we examine the impact of
worker parallelism and disk caching on the I/O, pre-process and compute pipeline (Section 5.1);
the effect of storage media on the training time (Section 5.2); the effect of mini-batch sizes (Sec-
tion 5.3); the variability in training time across epochs and devices (Section 5.4); and the impact
of power modes on the training time and energy usage (Section 5.6). Besides offering a holistic
characterization of DNN training on edge accelerators, it also assists ML developers to improve
the training performance by choosing the right hardware and platform setup. Overall, we perform
≈ 5170 training epochs using different configurations to report our results. The scripts and logs for
these are available at https://github.com/dream-lab/edge-train-bench/tree/sigmetrics-2023. Further,
we use these experimental results to develop a prediction model for the expected DNN training
time per epoch and the energy per epoch for any given power mode (Section 5.7). This can be
used by developers of new DNNs to define a custom power mode from among, e.g.,

(
CPU core

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

https://github.com/dream-lab/edge-train-bench/tree/sigmetrics-2023

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:9

w=0 1 2 4 0 1 2 4 0 1 2 40

100

200

300

400

E2
E

tim
e

/ e
po

ch
 (s

ec
s)

0 1 2 4 0 1 2 4 0 1 2 40

400

800

1200

1600

AGX NX Nano
LeNet

AGX

Overheads
GPU Compute
Stall
Overheads
GPU Compute
Stall

ResNet
AGX NX

MobNet

(a) E2E time for Epoch 1+, with caching and parallel
workers𝑤 = 0, 1, 2, 4.

e=0 1+ 01+ 01+0

10

20

30

40

50

St
al

l t
im

e
/ e

po
ch

 (s
ec

s)

01+ 01+ 01+
AGX NX Nano

LeNet
AGX

ResNet
AGX NX
MobNet

(b) Stall times for Epoch 0
(no pipelining) and Epoch
1+, with𝑤 = 4.

0

40

80

120

160

200

En
er
gy

 C
on

s.
/ e

po
ch
 (m

W
h)

0

800

1600

2400

3200

4000

AGX NX Nano
LeNet

AGX

e=0,w=4
e=1,w=0
e=1,w=4

ResNet
AGX NX
MobNet

(c) Energy values for Epoch 0
with 𝑤 = 4 and Epoch 1 with
𝑤 = 0, 4.

Fig. 2. Effect of pipelining, parallel workers (w) and disk caching on stall time, E2E time and energy per epoch.

counts (8) × CPU frequencies (29) × GPU frequencies (14) × EMC frequencies (9)
)
= 29, 232 possible

combinations for AGX, with a suitable time–energy trade-off with minimal prior benchmarking.

5.1 Pipelined Training and Disk Caching
Number of Fetch/Pre-process Workers. The PyTorch dataloader lets users specify zero or more
workers (𝑤) that are each responsible for fetching and pre-processing one mini-batch, and these
processes pipeline into a single GPU compute process that executes the training kernel on the GPU
for this pre-processed mini-batch. Setting 𝑤 = 0 (default) causes all three stages to be executed
sequentially by a single process, without any pipelining. With𝑤 > 1, multiple workers perform
the fetch and pre-process in parallel to get batches ready for a separate GPU compute process.

Intuitively, pipelining and parallelism should reduce the training time. But the benefit varies a lot
across the devices and models. We evaluate the effect of: (1) disabling (𝑤 = 0) and enabling (𝑤 > 0)
pipelining, and (2) the degree of parallelism of the fetch and pre-process workers (𝑤 = {1, 2, 4, 8})
on the training time and on the stall time for the three DNN models when running on the AGX,
NX and Nano. The training data is on the HDD connected over USB for uniformity.

Fig. 2a shows the total end-to-end (E2E) training time per epoch for these configurations, and its
component times – the total fetch stall time when the GPU was idle, waiting for a mini-batch to
be ready after fetch and pre-process; the GPU compute time where the training was happening,
potentially overlapping with the fetch and pre-process stages; and the remaining overhead time for
the epoch. As discussed next, epoch 0 has boot-strap overheads; so we exclude epoch 0 and report
an average over only epochs 1 to 5 (1+) in Fig. 2a.

Disk Caching. The Linux page cache uses available free memory to retain recently fetched file
pages in memory. So some of the training data used in previous epoch(s) may be available in the
cache for future epochs, reducing disk access. We study the effect of caching on the stall time.

At the start of every training run, we always drop the page cache to avoid inter-experiment cache
effects. This is also mimics an end-user training scenario. So, for epoch 0, all training data will be
accessed from the disk, whereas for epochs 1+, a subset of the data may be present in and fetched
from RAM, depending on the memory pressure from applications and the Least Recently Used
(LRU) cache eviction policy [53]. To measure the impact of such caching, we report the stall times
for epoch 0 and averaged over epochs 1+ separately in Fig. 2b. A typical DNN training will run for
100𝑠 of epochs. So epoch 1+ is representative and epoch 0 runs just once. Our analysis follows next.
5.1.1 A large page cache (RAM) can reduce the stall time. If all the training data can fit within the
Linux page cache, then the disk I/O is seen only for epoch 0 where the cache is initially populated
and the I/O time is eliminated for epochs 1+. Since training typically runs over 10–100𝑠 of epochs,
this can give a tangible benefit.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:10 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

In Fig 2b, the stall time for MobileNet on AGX using four workers drops from 46.4𝑠 for epoch 0
and to 12.9𝑠 for epoch 1+. AGX’s 32 𝐺𝐵 of RAM is able to fit the MobileNet model and its entire
GLD dataset, which is 2.8 𝐺𝐵 on disk, at the end of epoch 0. vmtouch reports that 100% of the
training file is cached. Hence, IOPS for epochs 1+ drops to zero and future accesses to the training
data is only from the cache.

In contrast, the stall times for MobileNet on NX are 18.9𝑠 for epoch 0 and a comparable 20.9𝑠 for
epoch 1+ (Fig 2b). NX only has 8𝐺𝐵 of RAM which is shared between GPU and CPU. The memory
taken by the larger DNN model in GPU makes the available cache inadequate to retain the full
training data and less than 6% of data is cached as per vmtouch. Since the samples in a mini-batch
are randomized in each epoch, there is no data locality and no reuse of partially cached data. Linux
cache’s LRU policy is also not well-suited for this access pattern [34]. In this scenario, all accesses
to training data in epochs 1+ hit the disk, causing stalls similar to epoch 0.
We confirm this benefit for training MobileNet on AGX by explicitly dropping the cache after

each epoch and notice that the stall times increases back to to 49.91𝑠 for epochs 1+. On the other
hand, there is no difference in the stall times for MobileNet on NX even with an explicit cache-drop
since the partially cached data is not reused due to lack of data locality across epochs.
5.1.2 A slower CPU or a smaller training data can mitigate the benefits of caching on stall time.
Caching has limited impact when the stall time is dominated by the pre-processing stage (due to a
relatively slower CPU) rather than the fetch time. Fetches can be faster due to a smaller training
data or, as we will see in Sec 5.2, a faster disk.

We see this happen for LeNet and ResNet on all devices. There is no visible effect of caching and
the stalls are similar across all epochs. Both MNIST and CIFAR10 are small datasets and the I/O
time even on a slower HDD is negligible. The IOPS drop to near-zero for epoch 1+. However, the
time to pre-process them still takes, say 12𝑠 for ResNet, and this contributes to the stall time.
So, we get caching benefits only in a sweet spot, when: (1) the training data is small enough to

fully fit in the cache, i.e., within the available RAM after loading the DNN model, and yet (2) the
training data also is large enough that the fetch I/O time dominates over the pre-processing time.
5.1.3 Pipelining reduces the stall time. When pipelining is enabled by increasing the workers from
𝑤 = 0 to 𝑤 = 1 for epochs 1+, the stall time per epoch sharply reduces. In Fig. 2a, the stall time
(dark green stack at the bottom) for training LeNet reduces on AGX from 22𝑠 for 𝑤 = 0 to 12.1𝑠
for𝑤 = 1, and on NX from 33.8𝑠 to 18.7𝑠 . On the Nano, the drop is even more prominent at 2.5×.
Similarly, pipelining of ResNet on AGX reduces the stall time by 1.9×, while for MobileNet on NX
it drops by 2.4×. These drops are expected since pipelining hides the GPU stalls due to disk I/O and
CPU pre-processing. AGX has a steep reduction for MobileNet, but this is due to caching – as seen
above, caching does not benefit the other models and devices and their gains are due to pipelining.
5.1.4 The relative drop in E2E time due to pipelining depends on the model and the device. ResNet is
trained on CIFAR, which uses small-sized images and has lesser I/O. However, training the ResNet
model is GPU intensive. So the stall time is a small fraction of the E2E time (6.7% for epoch 0),
and pipelining reduces the overall time by only 2.9%. For LeNet, the model itself is light-weight
and despite MNIST having a small image size, the stall time is a larger fraction of the E2E time.
So the benefits of pipelining in reducing the overall epoch time is higher, giving an average of
17.7% benefit across devices. MobileNet requires modest GPU computation but the GLD images are
relatively larger, resulting in significant I/O and CPU compute. Hence, pipelining halves the E2E
time on AGX and reduces it by 38.7% for NX.
5.1.5 The stall time and its reduction due to pipelining are decided by the relative speeds of CPU, GPU
and disk. With pipelining enabled (𝑤 = 1), a stall is avoided when the sum of the fetch time from
disk (or cache) and pre-processing time on CPU is smaller than or comparable to the GPU compute

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:11

time for a mini-batch. So the relative speeds of the disk, CPU and GPU, the size of the input data
(which affects fetch and pre-process times), and the complexity of the DNN (which affects the GPU
compute time), together determine the stall time.

We discuss disk speed effects later in Sec. 5.2. Here, all devices use the same HDD type but have
different CPU frequencies. So, as the CPU speed of a device decreases, the stall time per epoch for
LeNet without pipelining (𝑤 = 0) increases from AGX to NX to Nano, from 22𝑠 to 33.8𝑠 to 42.6𝑠 .
With pipelining (𝑤 = 1), the stall times for all three devices are similar at 12.1𝑠 , 18.7𝑠 and 17.2𝑠 ,
respectively. This is because the GPU compute times are the highest for Nano, followed by the NX
and the AGX, due to the increasing GPU speeds. As a result, a longer fetch and pre-process time is
hidden by a similarly longer GPU compute time. So, when configuring a device, the relative speeds
of the resources are more important than the absolute speed of any one resource.

When training MobileNet on AGX, caching eliminates the fetch time and the CPU is fast enough
to pre-process the mini-batch before the GPU finishes training a prior mini-batch. So, pipelining
largely hides the stall time.
5.1.6 Parallelizing the fetch and pre-process may give benefits beyond pipelining. When we increase
the number of workers to𝑤 > 1, we can fetch and pre-process multiple mini-batches in parallel.
This may further reduce the stall time, but is not guaranteed. In Fig. 2a, the stall times per epoch
for both LeNet and ResNet are very low (< 20𝑠) with 𝑤 = 1, which corresponds to < 6𝑚𝑠 per
mini-batch. This cannot be further reduced. For MobileNet on AGX, the stalls are completely hidden
by pipelining using𝑤 = 1. So, an increase in𝑤 does not give additional benefits in these cases.

However, for MobileNet on the NX, we see stall times of the order of 456𝑠 even with pipelining
with 𝑤 = 1. This is caused by the higher fetch and pre-process costs for the larger sized data,
relative to the GPU compute for training the model. So, increasing𝑤 from 1 to 2 reduces the stall
time by 67.3% and the E2E time by 30.5% due to better disk and CPU utilization that we observe
with the parallel workers. This improvement continues as we increase𝑤 to 4 and saturates beyond
𝑤 = 8, both of which have a small stall time of ≈ 21𝑠 per epoch relative to an E2E time of ≈ 576𝑠 .
Hence, we use𝑤 = 4 workers as the default in our experiments.
5.1.7 Pipelining can reduce the energy consumption for training. Pipelining increases the instanta-
neous power load across all models and devices, but the total energy consumed for the epoch is the
same or lower (Fig. 2c). As fetch stalls reduce, the GPU and the CPU are utilized better and this
increases the power load. However, this is offset by a drop in the training time for the epoch due to
pipelining. In Fig. 2c, in going from𝑤 = 0 to𝑤 = 4 for LeNet epoch 1+, the energy per epoch drops
by 5.4% for AGX and 8.9% for NX, and increases by 4.7% for Nano. MobileNet has a higher energy
reduction of 20.1% and 38.9% for AGX and NX due to a larger drop in E2E time due to pipelining.

As a separate note, preliminary experiments on Orin show a reduction in epoch 1+ E2E training
time of 1.8–3.9× compared to AGX, for the three DNN models. This loosely matches its 4× increase
in CUDA cores. But these require further detailed investigations as future work.

5.2 Effect of Storage Media
Since the edge devices support a variety of storage media, it helps to understand the impact of these
on the training time. This will allow us to select the appropriate storage type for a given training
workload – a faster (and costlier) disk may not necessarily give a performance benefit in certain
cases. Here, we train the models on the devices using the default setup, but perform different runs
with the training data present on SD Card, HDD, or SSD, with the latter only supported on AGX
and NX. Our observations and analysis are given below.
5.2.1 Any drop in stall time due to a faster storage media depends on the I/O pressure during fetch.
Fig. 3a shows the stacked E2E time for epoch 0 (i.e., no cache benefits) and with pipelining disabled
(𝑤 = 0) to localize the impact of disk speeds. When the mini-batch size for a model is small, such as

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:12 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

S D H S D H D H0

100

200

300

400

E2
E

tim
e

/ e
po

ch
 (s

ec
s)

S D H S D H S D H0

400

800

1200

1600

AGX NX Nano
LeNet

AGX

Overheads
GPU Compute
Stall
Overheads
GPU Compute
Stall

ResNet
AGX NX

MobNet

(a) Epoch 0 (no caching), 𝑤 = 0 (no
pipelining)

S D H S D H D H0

100

200

300

400

E2
E

tim
e

/ e
po

ch
 (s

ec
s)

S D H S D H S D H0

400

800

1200

1600

AGX NX Nano
LeNet

AGX

Overheads
GPU Compute
Stall
Overheads
GPU Compute
Stall

ResNet
AGX NX

MobNet

(b) Epochs 1+ with𝑤 = 4

S D H S D H D H0

50

100

150

200

En
er
gy

 C
on

s.
/ e

po
ch
 (m

W
h)

S D H0

1000

2000

3000

4000

S DH S DH
AGX NX Nano

LeNet
AGX

ResNet
AGX NX
MobNet

(c) Energy for Epochs 1+ with𝑤 = 4

Fig. 3. Effect of SSD, SD card and HDD storage media on the stall time and the end-to-end time per epoch.

0

50

100

150

200

250

St
al

l t
im

e
/ e

po
ch

 (s
ec

s)

LeNet ResNet MobNet

26

13

8 5

25

13

7 4

25
19
18
17

1
8
16
32
64
128

0

10

20

30

40

50

St
al

l t
im

e
/ b

at
ch

 (m
illi

se
cs

)

(a) Stall Time

0

500

1000

1500

2000

2500

Co
m

pu
te

 /
ep

oc
h

(s
ec

s)

LeNet ResNet MobNet

34743
21
116 3

1
8
16
32
64
128

0.0

0.5

1.0

1.5

2.0

2.5

Co
m

pu
te

 /
ba

tc
h

(s
ec

s)

(b) GPU Compute Time

0

500

1000

1500

2000

2500

E2
E

tim
e

/ e
po

ch
 (s

ec
s)

LeNet ResNet MobNet

607

74
38
19
116

1
8
16
32
64
128

(c) E2E time
Fig. 4. Performance on AGX with batch-size (𝑏𝑠) changing from 1 to 128. The time per epoch is on the bars on
the left Y axis, while the time per mini-batch is on the markers on the right Y axis.

MNIST and CIFAR, the I/O overheads of fetch are small. The IOPS are near zero in all cases. As a
result, having a faster SSD or SD card gives no stall time benefits for LeNet and ResNet. However,
MobileNet trains on the GLD data which loads ≈ 1.6𝑀𝐵 from disk per mini-batch. This puts a
higher I/O pressure on the disk and the difference between the three storage devices is visible. The
stall time reductions match the disk speeds, with AGX reporting stall times of 306𝑠 , 485𝑠 and 741𝑠
for SSD, SD card and HDD, respectively.
5.2.2 Caching and pipelining can hide the stall times of a slower storage media, and a faster disk
may not offer benefits. For an expected training configuration of epoch 1+ using𝑤 = 4 pipelined
and parallelized workers, the benefit of a faster disk is minimal. Fig. 3b shows that the time taken is
almost the same across disk media, for a given DNN model trained on a device. The stall times are
small and their differences negligible, e.g., MobileNet on AGX has stall times on SSD, SD card and
HDD of 13𝑠 , 13.1𝑠 and 12.9𝑠 , relative to an overall E2E training time of ≈ 298𝑠 for all three. While
MobileNet on NX is slightly slower for HDD, this is < 3% relative to the SSD.

As a side-note, Fig 3c shows that the storage media does not directly affect the energy per epoch,
but the energy used changes due to the difference in training times.

5.3 Effect of Mini-batch Size
Mini-batch size is a well studied hyper-parameter in DNN training, and it affects the statistical
efficiency and rate of convergence. Their sizes range from 1–100𝑠 of samples [5], though smaller
sizes of 2–32 give better results [32]. The maximum mini-batch size is limited by the GPU memory.
Workstation GPUs like RTX2060 and RTX3080 with 6–12𝐺𝐵 of dedicated GDDR RAM can run out
of memory for larger models and mini-batch sizes. But the AGX has 32𝐺𝐵 of RAM shared between
CPU and GPU, and hence can train larger models and mini-batch sizes. So, it is worth examining
the effect of varying the mini-batch size on the system performance. Here, we focus on AGX, which

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:13

d1 d2 d3 d4 d50

200

400

600

800

E2
E
tim

e
/ e

po
ch
 (s

ec
s)

d1 d2 d3 d4 d5 d1 d2 d3 d4 d5
Nano-LeNet NX-MobNet AGX-ResNet

0

200

400

600

800

Nu
m
be

r o
f E

po
ch
s

of Epochs
E2E time distr

(a) E2E Time

d1 d2 d3 d4 d50.0

0.1

0.2

0.3

0.4

En
er

gy
 C

on
s.

/ e
po

ch
 (W

h)

d1 d2 d3 d4 d50

1

2

3

4

d1 d2 d3 d4 d5
Nano-LeNet NX-MobNet AGX-ResNet

(b) Energy Consumed
Fig. 5. Variability of device types and models for device instances over time for a 15ℎ training run. Violin
distribution of E2E time or Energy per epoch is on left Y axis. A marker for # of epochs run is on right Y axis.

is the more recent edge device and has a larger memory. We vary the mini-batch size from 𝑏𝑠 = 1
to 128 samples, but otherwise retain the default configuration for AGX from Sec. 4.4.
5.3.1 Increasing the mini-batch size reduces the training time per epoch until the parallelism of the
GPU cores saturate. As the mini-batch size increases, the data-parallelism of the GPU is better
exploited as the samples in the mini-batch are independently processed on the different cores, and
there are more rounds of data-parallel work per mini-batch. As a result, the compute time per
mini-batch only gradually increases with larger batches until the GPU hits maximum utilization.

We see this in Fig. 4b (markers on right Y axis), where for MobileNet, increasing mini-batch size
from 1 to 8 to 16 increases the GPU compute time per batch by only 1.4× and 1.56×. At 𝑏𝑠 = 16 the
GPU utilization is 99% and doubling the mini-batch size almost doubles the time per mini-batch,
e.g., from 195𝜇𝑠 to 361𝜇𝑠 from 𝑏𝑠 = 16 to 𝑏𝑠 = 32. With a larger mini-batch size, we have fewer
batches per epoch and hence the total GPU compute time per epoch reduces. This is seen in the
left Y axis bars where the compute time reduces sharply for all three models. The benefits plateau
out for the larger models having 100% GPU usage, e.g., beyond 𝑏𝑠 = 16 for ResNet and MobileNet,
while they continue for the small LeNet model which uses only 25% GPU even at 𝑏𝑠 = 128.
5.3.2 Increasing the mini-batch size increases the stall time per mini-batch but reduces the overall
stall time per epoch. As seen in Fig. 4a, when the mini-batch size increases, there are more samples
to be fetched per mini-batch. This involves more I/O, and also increases the CPU pre-processing
time. This can be seen in the stall time per mini-batch increase on the right Y axis markers. Also,
the GPU compute time per mini-batch grows slowly, as discussed above. This causes the stall time
per mini-batch to increase. However, since the number of mini-batches per epoch decreases, the
total stall time per epoch decreases, as seen in the bars on the left Y axis.

A bulk (> 90%) of the E2E time is a combination of stall time and GPU compute times. The stall
time dominates for LeNet while the GPU compute time dominates for ResNet and MobileNet. Fig. 4c
shows the effects on the E2E time per epoch reducing due to both these factors, as 𝑏𝑠 increases.

5.4 Variability across Device Instances and Epochs
A prior work on DNN inferencing on edge accelerators [1] reports a significant variability in both
the inference latency and the power drawn for different instances of the same Jetson device type.
In contrast to inferencing workloads that run in milliseconds, training workloads run for minutes
or hours and are likely to be less sensitive across devices. Since DNN training can be long-running,
we also study if there are changes in the device performance over a long training lifetime.

We train DNN models on 5 devices each of AGX, NX and Nano. For each device type, we run the
largest model it can train – ResNet on AGX, MobileNet on NX and LeNet on Nano. We run the
training epochs continuously for a 15ℎ period using the default configuration in Sec. 4.4 1.
1We conducted a 24ℎ run on all the devices. However, we observe a sudden drop in power usage after 16ℎ but with no
impact on the training time per epoch or the resource performance. This is consistent across device types and instances,

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:14 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

Off On Off On Off On0

100

200

300

400

500

E2
E
tim

e
/ e

po
ch
 (s

ec
s)

LeNet ResNet MobNet

Overheads
GPU Compute
Stall
Overheads
GPU Compute
Stall

(a) E2E time/epoch

Off On Off On Off On0.0
0.5
1.0
1.5
2.0
2.5
3.0

En
er
gy

 C
on

s.
/ e

po
ch

 (W
h)

LeNet ResNet MobNet

DVFS
Off
On

(b) Energy used/epoch

Off On Off On Off On0

20

40

60

80

100

%
ile

 o
f t

im
e

at
 G

PU
 Fr

eq
.

LeNet ResNet MobNet

300 MHz
Max

(c) %’ile of GPU Freqs.

Off On Off On Off On0

20

40

60

80

100

%
ile

 o
f t

im
e
at
 C
PU

 Fr
eq

.

LeNet ResNet MobNet

100-90%
90-80%

80-70%
70-60%

60-0%

(d) %’ile of CPU Freqs.

Fig. 6. Performance of AGX with DVFS off and on.

5.4.1 There is minimal variability in the E2E training time per epoch, for different epochs trained
on a given device type. Fig. 5a shows a violin plot distribution of the E2E training time per epoch,
for every instance of each device type. We see that all the violins have a tight distribution and the
deviation across time even in the worst case is within 1% for ≈ 150 epochs of ResNet on AGX, 5%
for ≈ 95 epochs of MobileNet on NX and 1% for ≈ 670 epochs of LeNet on Nano. So training a DNN
for just a few epochs will generalize to more number of epochs on a device instance.
5.4.2 There is minimal variability in the E2E training time per epoch, across devices of the same type.
In Fig. 5a, the median E2E epoch training time across instances of a device type are almost identical.
While they fall within 1% for AGX, the variability is slightly higher for Nano and NX, at 7.8% and
5.4%, due to marginal under-performance of Nano devices 𝑑4 and 𝑑5 and NX device 𝑑4. So training
a DNN on a single device will reasonably generalize to other instances of that device type.
5.4.3 There is minimal variability in the energy consumed per epoch, across time and across devices
of the same type. Fig. 5b shows that the energy consumed per epoch does not vary much across
device instances or over different epochs. They fall to within 5.89% for AGX, 5.53% for NX and
8.81% for Nano. These variations can be attributed to the minor changes in the training time per
epoch. Issues like overheating, thermal throttling, etc. are not observed.
5.4.4 Significant variability is observed when there is a difference in the software configurations of
devices. Anecdotally, we observe that any changes to the OS kernel, PyTorch or NVIDIA Jetpack
versions lead to variability in the performance of different instances of the same device type. In
some cases, we see a variability of up to 40% in the E2E time per epoch. So careful attention has to
be paid to the software setup across the devices to ensure reproducibility and deterministic behavior.
E.g., we reboot each device before starting experiment runs to ensure a clean initialization.

5.5 Effect of DVFS
Enabling Dynamic Voltage and Frequency Scaling (DVFS) allows the CPU governor to dynamically
alter the CPU, GPU and memory frequencies depending on the system load, to conserve energy.
Here, we study the impact of DVFS on both the E2E time and the energy consumed. Here again,
we limit our evaluation to AGX, for brevity. DVFS can be changed using the jetson_clocks
utility. We disable DVFS by setting the CPU, GPU and memory frequencies to a static value. We set
this to the maximum frequency allowed for the default MAXN (𝑔) power mode and do not change
it. This ensures that the system always operates at peak performance 2. Other configurations are
the defaults for AGX from Sec. 4.4.

and across runs. We suspect it is a software overflow bug in the NVIDIA power monitoring tool, and are investigating this
at the time of writing. Hence, we only report data for the first 15ℎ.
2In our experiments, we notice slight variations in frequencies even with DVFS off, e.g., when the CPU is set as 2265𝑀𝐻𝑧

we notice readings of 2263𝑀𝐻𝑧 and 2262𝑀𝐻𝑧. For simplicity, we consider all frequencies beyond the 95𝑡ℎ percentile of
the expected value to be the static value.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:15

5.5.1 Enabling DVFS has negligible effect on the E2E time or the energy consumed per epoch. Fig. 6a
shows the E2E time taken and the energy consumed per epoch, with DVFS off and on. There is
not much variation in either the time or energy for all 3 DNN models. E.g., the most deviation we
see is for ResNet with the E2E time being 349𝑠 and 358𝑠 with DVFS off and on, which is within 2%
of each other. The energy usage difference is negligible as well with at most a 3% variation seen,
again for ResNet at 3.03𝑊ℎ and 2.95𝑊ℎ.
5.5.2 Enabling DVFS does change the frequencies of CPU, GPU and memory, despite not affecting the
training performance. While the values of E2E time and energy are similar with DVFS on or off, the
frequencies are indeed changing when DVFS is on. E.g., LeNet has a low GPU utilization of about
7% with DVFS off, and this causes the GPU frequency to reduce from 1377𝑀𝐻𝑧 to 300𝑀𝐻𝑧, in
Fig. 6c, for the entire training period with DVFS on. This also causes the GPU utilization to increase
to 14–34%, which helps it train within a similar E2E time. ResNet and MobileNet have a high GPU
utilization of ≈ 100% and hence the GPU frequency is not modified. The memory frequencies (not
plotted) also show no differences for the latter two models, and some reduction in frequency for
16% of the time for LeNet.

We see a more active variation in the CPU frequencies across the models. Fig. 6d shows the
fraction of training times where the CPU was set to different frequency values, given as a % of the
maximum frequency, 2265𝑀𝐻𝑧. LeNet exhibits CPU variability for ≈ 50% of its runtime, while it is
at > 90% of peak CPU clock speed for the rest. This is both due to the pre-processing costs and the
higher overheads for launching the GPU kernels for each layer. The CPU frequencies for ResNet
and MobileNet are below their peak clockspeed for 90% and 65% of their runtime, respectively.
Since they are GPU bound, the CPU has low utilization for the most part. E.g., with DVFS off, the
median CPU utilization for ResNet and MobileNet are only 11% and 25%.

5.6 Baseload and Effect of Power Modes
Baseload under Idle States. In this section, we drill-down into some of the power modes of the
Jetson devices. Prior to that, it is helpful to understand the baseload on the devices under different
states of idleness, to understand their sustainability and energy impact. We examine four baseload
conditions: (i) A clean-start of the device with no applications running, but with the logging of
performance and energy metrics turned on and DVFS turned off. This setting mimics our default
experiment harness but without actually running any training workloads. (ii) No applications
or logging harness running, but DVFS turned off. (iii) No applications or logging running, but
DVFS turned on. (iv) Device in Wake on LAN (WoL) state, where it can be activated by a network
command but is otherwise suspended. The last is helpful when devices have to be occasionally
woken up for training but can otherwise remain turned off.

Since logging is disabled in (ii)–(iv), we instead use the JouleJotter [45] power monitor in these
baseload experiments. It samples the plug-load to the device every 20𝑠 and records it locally. All
devices are set to their default (MAXN or equivalent) power modes, and we measure their power
loads over a 30𝑚𝑖𝑛 period. The average of these samples for the devices and idle states is reported
in Fig. 7. Orin’s WoL was not supported as of the time of writing.

As expected, WoL has the lowest power consumption of all the idle states for all devices, and is
substantially lower than the next lowest idle state with DVFS on. On the Nano, WoL uses < 1𝑊
of power while it is < 4𝑊 even for AGX. Turning on DVFS results in a significant power saving
for more powerful devices like Orin and AGX, but has negligible impact on NX or Nano. Logging
has minimal impact on the faster devices, while it leads to higher power load for Nano. This is a
constant overhead during the training experiments. The power load during training tends to be
much higher since the CPU and/or GPU are active. E.g., the average power load on AGX when
training ResNet is 31𝑊 while it is 5𝑊 when training LeNet on Nano.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:16 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

Orin AGX NX Nano0

5

10

15

20

Av
g

Po
we

r(W
)

W
ak

e
on

 L
AN

 N
/A Logging+DVFS Off

DVFS Off
DVFS On
Wake on LAN

Fig. 7. Average socket power load (W) for var-
ious idle states on all devices.

0 600 1200 1800 2400 3000
Energy Cons. (mWh) [ResNet,MobNet]
0

180

360

540

720

900

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Re

sN
et
,M

ob
N
et
]

LeNet
ResNet
MobNet a

h
b
i

c
j

d
k

e
l

f
m

g
n
0

18

36

54

72

90
E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90
E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90
E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

Fig. 8. Scatter plot of E2E time vs. Energy
consumed per epoch (1+), for power modes
𝑎–𝑛 of AGX for LeNet (secondary axes) and
ResNet/MobileNet (primary axes). The yel-
low lines indicate the Pareto front per DNN.

Pow.Mode a b c d e f g h i j k l mn0

20

40

60

80

100

E2
E

tim
e

/ e
po

ch
 (s

ec
s)

a b c d e f g h i j0

160

320

480

640

800

a b c d e f g h i j
LeNet

Overheads
GPU Compute
Stall
Overheads
GPU Compute
Stall

ResNet MobNet

(a) E2E time

Pow.Mode a b c d e f g h i j k l mn0

40

80

120

160

200
En

er
gy

 C
on

s.
/ e

po
ch

 (m
W

h)

a b c d e f g h i j0

600

1200

1800

2400

3000

a b c d e f g h i j

Incremental
Base
Incremental
Base

LeNet ResNet MobNet

(b) Energy

Fig. 9. E2E time and energy usage per epoch for different
power modes of AGX. See Table 3 for power mode labels.

Impact of Power Modes. The Jetson devices come with a number of pre-defined power modes
that users can choose from. Additionally, we can also configure a custom power mode by specifying
the number of CPU cores enabled, and the frequencies of CPU, GPU and RAM (External Memory
Controller (EMC)) 3 The power mode can be changed on the fly, without any system downtime.
This can help define an ideal power mode for each DNN model training, which balances the

training time and the energy used by the constrained edge device, e.g., to stay within a daily energy
budget or to avoid overheating of enclosures, while still minimizing the training time. The range of
values for the frequencies is also wide, and choosing one power mode over another can result in an
order of magnitude performance difference in time and energy. E.g., running Resnet on AGX using
the MAXN peak power mode is 10.3× faster, has 3.6× more power load and consumes only 0.4×
energy compared to running it with a much lower GPU frequency of 114.75𝑀𝐻𝑧.
We study the impact of power modes on the training time and energy use of AGX. We choose

a mix of both pre-defined and custom power modes, labelled 𝑎–𝑛 in Table 3. We typically vary
one resource parameter at a time (shown in bold) between the modes to examine its incremental
impact. Some power modes are only evaluated for specific experiments. We use the defaults for
AGX (Sec. 4.4) and report results for epochs 1+.

In Fig. 8, we plot the E2E time (Y axis) and the energy consumed per epoch (X axis) for the 3
DNN models and 14 power modes evaluated. We draw the Pareto front (yellow lines) for each
device, which is the envelope that minimizes both the epoch training time and the energy, and
is monotonic along one or both axes. We first add the leftmost data point (lowest energy) to the

3Not all frequencies are allowed. There are 29 possible CPU frequencies, 14 GPU frequencies and 9 memory frequencies.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:17

Table 3. Power Modes Evaluated

Device Label CPU Cores CPU MHz GPU MHz RAMMHz

AGX

a 4 1200 670 1333
b 8 1200 670 1333
c 8 1200 900 1333
d 8 1200 900 1600
e 8 2100 900 1600
f 2 2100 900 1600

g (MAXN) 8 2265 1377 2133
h 8 2265 1377 1066
i 8 2265 1377 1333
j 8 2265 1377 1600

k 4 1036 420 2133
l 8 1036 420 2133
m 8 2265 420 2133
n 8 2265 900 2133

NX 15W 6 1400 1100 1600
Nano MAXN 4 1479 921 1600
Orin MAXN 12 2200 1300 3200

Cells in bold indicate a value change from the cell in the previous row.
Since most of these are custom power modes, they do not have a preset power budget.

Pareto front. As we move right (increasing energy), any data point whose E2E time is lesser than
the previous data point is added to the Pareto front. These Pareto optimal points have the least
Y-axis value for any X-axis value, or vice versa. While ResNet and MobileNet offer several Pareto
optimal points for an optimization trade-off, LeNet has just three, limiting the choices. We also
show variations of this scatter plot to highlight the effect of each of resource type in the Appendix.
A similar plot of E2E time against the average power load (Fig. 11 in the Appendix) shows an
inverse correlation, as expected, with the training time per epoch decreasing as the power load
increases for a higher power mode.
5.6.1 The default power mode may not be Pareto optimal. For all models, the peak power mode 𝑔
(MAXN; ♦) with the highest core counts and frequencies has the fastest time, and is on Pareto front.
But the system default power mode for AGX is 𝑎. This mode is on the Pareto front for MobileNet
but not for LeNet or ResNet. So training with the default power mode may give a sub-optimal
time–energy trade-off, depending on the model, necessitating an intelligent choice of power mode.
5.6.2 The energy consumed is often dominated by the baseload rather than the incremental load due
to training. We record the energy consumed by the AGX under baseload, i.e., when the system is on
and doing minimal processing like monitoring resource counters (idle state (i)). The baseload for 𝑔
(MAXN) is 7527𝑚𝑊 . As Fig. 9b shows, the baseload (dark brown) forms a large fraction of energy
consumed when training, i.e., the device would have consumed the same energy for that period
even if we were not training a model. This is larger at 65–80% for smaller models like LeNet, which
do not use much CPU and GPU, while it is about 20-45% for ResNet and MobileNet. So, unless the
device is in a sleep state with WoL activation only during training, it is better to put it to use for
training rather than stay idle and consume similar energy.
5.6.3 The variation in energy consumed per epoch is modest across power modes for larger DNN
models. While we experiment with a wide range of power modes, the energy consumed per epoch
does not vary much across them. The reduction between the most and the least energy consuming
mode (excluding MAXN and its neighbors, 𝑔– 𝑗), is ≈ 27% for LeNet, ≈ 6% for ResNet and ≈ 12% for
MobileNet, as seen in Fig. 9b. So, for the larger models, choosing a power mode that trains faster
may not impose a higher energy penalty. MAXN is the only exception, and tends to consume more
cumulative energy to complete training than others.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:18 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

5.6.4 The GPU compute time is inversely proportional to the GPU frequency for larger DNNs. As
expected, increasing the GPU frequency reduces the compute time spent on the GPU, but this is
limited to larger DNN models that are GPU-bound. In going from power mode 𝑏 to 𝑐 , the GPU
frequency increases from 670𝑀𝐻𝑧 to 900𝑀𝐻𝑧 while all other parameters stay the same. The drop
in GPU compute time (Fig. 9a) for ResNet is 22.3%, from 632𝑠 to 491𝑠 . MobileNet has a more modest
drop of 12.6% from 505𝑠 to 441𝑠 . LeNet is affected the least, in fact increasing from 38.4𝑠 to 40.5𝑠 , as
it is lightweight and does not utilize the GPU fully.
5.6.5 Increasing the CPU frequency and number of cores reduce the stall time. The stall time depends
on the difference between fetch and pre-processing time, and the GPU compute time. Increasing
the CPU frequency and/or core count can reduce the pre-processing time and hence the stall time.
In going from power mode 𝑑 to 𝑒 , the CPU frequency steeply rises from 1.2𝐺𝐻𝑧 to 2.1𝐺𝐻𝑧, causing
a drop in stall time by 31–38.7% for all three models. While stall time is a small part of the E2E time
for MobileNet and ResNet, this leads to a 13.5% improvement in E2E time for LeNet.
Similarly, when we double the core-count from 4 to 8 for power modes 𝑎 to 𝑏, we see a drop in

stall time by 17.6–19.5% for the three models. Here, the benefits are incremental since we have
only𝑤 = 4 worker processes and increasing beyond 4 cores does not help much. However, when
we drop from 8 to 2 cores between power modes 𝑒 and 𝑓 , the stall time sharply increases by 54.4%
for LeNet and ≈ 47% for MobileNet and ResNet. Since we have fewer cores than the active worker
processes, the worker parallelism suffers.
5.6.6 Increasing the CPU frequency and number of cores reduces the GPU compute time, and more
so for light models. Besides pre-processing, the CPU also loads the kernel to the GPU. Depending
on the DL framework used, there may be one or more kernels launched per DNN layer. This time
can be significant for lightweight DNNs [22]. Hence changing the CPU frequency and core-count
affects the GPU compute time, which includes the time for the kernel launch.
In Fig. 9a, when going from power mode 𝑑 to 𝑒 , the CPU frequency jumps from 1.2𝐺𝐻𝑧 to

2.1𝐺𝐻𝑧 while other resources stay the same. For LeNet, this causes a significant decrease in GPU
compute time by 36.8%, while this is smaller at 9.7% and 2% for MobileNet and ResNet.

Alternatively, when the CPU cores drop from 8 to 2 between power modes 𝑒 and 𝑓 , LeNet sees an
increase in GPU compute time by 35.9%. Since the kernel is launched multiple times per mini-batch,
one of the CPU cores will be busy for this operation. There will be contention for cores between the
kernel launch, the 4 workers and the logging process when there are fewer than 6 cores. MobileNet
is computationally costlier than LeNet, and can amortize the kernel launch overheads better. It
shows a smaller increase of 15.6%. ResNet which is the most demanding computationally is the least
affected, with a minor increase of 1.9%. The effect of fewer cores when pipelining and parallelism
are disabled (𝑤 = 0; not plotted) is less prominent, at 20.8% for LeNet and negligible for MobileNet
and ResNet due to less contention.
We illustrate the effects of CPU on the GPU compute time through specific runs on LeNet for

modes 𝑘–𝑛. In moving from 𝑙 to𝑚, as CPU frequency increases from 1036𝑀𝐻𝑧 to 2265𝑀𝐻𝑧, the
GPU compute time drops by 46.3% (Fig. 9a). Similarly, when the CPU cores increase from 4 to 8
for 𝑘 to 𝑙 , the GPU time drops by 14.6%. But, when the GPU frequency increases from 420𝑀𝐻𝑧 to
900𝑀𝐻𝑧 to 1377𝑀𝐻𝑧 between𝑚 to 𝑛 to 𝑔, the GPU time does not improve by more than 6.8%. Here,
GPU compute time is more sensitive to CPU frequency/cores than GPU frequency. Thus, running
LeNet in a high CPU frequency mode gives the best E2E time, and the lowest energy (Fig. 9b).
5.6.7 GPU compute time and stall times are affected by the memory frequency. To understand the
effect of memory frequency, we evaluate power modes 𝑔– 𝑗 where only the memory frequency
varies. From Fig. 9a, we see that as memory frequency increases, the GPU compute time decreases.
E.g., when the frequency doubles from mode ℎ to 𝑔, the GPU compute time drops by 33.4% for

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:19

LeNet, 25.8% for ResNet and 28% for MobileNet. We also see that the stall times reduce by 34.4%,
27.5% and 28.1% for these models. This indicates that the frequency of the memory shared between
CPU and GPU has a tangible impact on the training performance.

5.7 Predicting Training Time and Energy Usage for Custom Power Modes
Besides the insights drawn from our experiments above, we can also use the empirical data to
model the device behavior under training. We present a feasibility study on predicting the time
and energy required to train a candidate DNN model for any custom power mode of a given device.
We use simple regression techniques and minimal a priori profiling for a limited number of epochs
and power modes. This can help select the best power mode to trade-off time and energy for model
training, or for selecting a subset of (heterogeneous) devices for federated learning [7].
Our results show that training our time prediction model for just 3 epochs and for the 4 power

modes we recommend – which takes about 2 ℎ even for the costliest DNNwe evaluate – helps predict
the training time for any power mode within ≈ 12% Mean Average Percentage Error (MAPE). The
energy usage is dominated by the baseload, and estimating the model training time also helps
predict the energy usage. We offer preliminary results from a single pre-trained linear regression
model to predict the energy consumption per epoch. In the future, more sophisticated techniques
can help further improve the modeling accuracy. For brevity, we limit this study to AGX.
5.7.1 Model Training to Predict E2E Time per Epoch. We fit a simple linear regression model for a
given candidate DNN to predict its training time per epoch by collecting its training time for 4 power
modes we identify and for 3 epochs each; we drop epoch 0 due to its bootstrapping overheads and
use the remaining 4 × 2 = 8 samples. We fit the equation: 𝑎 · 𝑥1 +𝑏 · 𝑥2 + 𝑐 · 𝑥3 +𝑑 · 𝑥4 + 𝑒 = 𝑇𝑖 over
these 8 samples that form 𝑇𝑖 , the training time per epoch. The input feature vector: CPU frequency
(𝑥1), CPU cores (𝑥2), GPU frequency (𝑥3) and memory frequency (𝑥4) is set by the power mode.

A key contribution is identifying the 4 representative power modes to train the candidate DNN
over for a good prediction of the training time. We perform an exhaustive training of regression
models from the 10𝐶4 possible combinations of 4 power modes chosen from the 10 modes that we
evaluated for all 3 DNNs in Sec. 5.6. Among these, we select the set whose regression fit returns the
lowest sum of Root Mean Square Error (RMSE) for training times predicted for the 3 DNNs: LeNet,
MobileNet and ResNet. The power modes thus identified are: 𝑒 ,𝑓 ,𝑖 and 𝑗 , which cover 2 different
core-counts, CPU and GPU frequencies, and 3 different memory frequencies.

So, for any new DNN model, the user runs 3 epochs for the power modes {𝑒, 𝑓 , 𝑖, 𝑗}, takes their
latter 2 epoch training times to fit the first regression model, and uses this to predict the per-epoch
training time for the DNN for any power mode.

For energy, we fit a common (universal) linear regression model over the training data collected
for the various power modes for training 2 epochs of the 3 DNNs. It takes the power mode resource
values and the (predicted) training time as input, and estimates the expected energy per epoch.
5.7.2 Results. Fig. 10a compares the observed and predicted E2E epoch training times (bars on
left Y axis) for the regression model we fit for each of the 3 DNNs, using the above approach. We
evaluate it for the 10 different power modes, and report the MAPE as a marker on the right Y axis.
Further, we evaluate this approach for a fourth ab initio DNN model, VGG11, which was not

part of our original evaluation. We fit a regression model for VGG11 using metrics collected for 2
epochs from the 4 identified power modes and use it to predict the E2E time for all 10 power modes.

TheMAPE% on the right Y axis of Fig. 10a shows an error of under 10% for 31 out of 40 predictions,
and it is within 15% for all but 3 predictions of LeNet. LeNet, the smallest model, exhibits a higher
error since our four representative power modes do not have enough variation in their CPU
frequency, and LeNet is sensitive to CPU speed due to higher pre-processing and kernel launch
times. Interestingly, VGG11 which is a brand-new DNN unknown to our initial modeling shows

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:20 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

abcdefghi j abcdefghi j abcdefghi j abcdefghi j0
200
400
600
800
1000
1200
1400
1600

E2
E
tim
e
/ e
po
ch
 (s
ec
s)

LeNet ResNet MobNet VGG

MAPE (%)Observed
Predicted

0

10

20

30

40

M
AP

E
(%

)

(a) E2E Time and MAPE per power mode

abcdefgh i j abcdefgh i j abcdefgh i j0

1000

2000

3000

4000

En
er

gy
 C

on
s.

/ e
po

ch
 (m

W
h)

LeNet ResNet MobNet

MAPE (%)Observed
Predicted

0

25

50

75

100

M
AP

E
(%

)

(b) Energy and MAPE per power mode
Fig. 10. Predicting end-to-end (E2E) training time and energy use per epoch for power modes.

< 10% error for 9 out of 10 power modes. This strengthens our claim that minimal profiling using
the 4 power modes we identify is sufficient to predict the training time for any (non-tiny) DNN.
5.7.3 Energy. Similar plots for the energy consumption per epoch are shown in Fig. 10b. Here,
the prediction is made using the common regression model we provide, which uses the predicted
time as an input feature. The preliminary energy prediction model shows mixed results. While it
is able to predict the energy used per epoch for ResNet and MobileNet within about 25% MAPE,
this degrades to about 60% error for LeNet. This is due to the low absolute energy values for LeNet
coupled with the higher prediction error in its training time – which is an input to the energy model.
Energy prediction for VGG11 also shows poor results, with MAPE values ranging from 21–55%,
and a median of 46% and we do not report it. The energy modeling requires more investigation.

6 DISCUSSION AND CONCLUSION
In this paper, we have conducted a principled study of DNN training on Jetson accelerated edge
devices. This exploration is the first of its kind. Our results confirm certain conventional wisdom
and back them up with quantifiable metrics. But they also highlight counter-intuitive results which
should help rethink system design and tuning for DNN workloads on such platforms.
While the expectation is that caching, pipelining and parallelism of the training workflow

should give benefits, this is not always the case. An effective drop in end-to-end time is only seen
occasionally, where a certain balance between the CPU, GPU and disk speeds, the training data
size, and the model size/compute intensity are met. While one may expect a faster disk to reduce
the training time, this too does not always hold. Enabling caching and pipelining can mitigate the
effects of a slower disk. Mini-batch size should be chosen to maximize GPU parallelism, but it does
not give benefits beyond a point. Unlike previous studies on inferencing on edge devices, we do not
see much variability in training time across device instances, or over time. The baseload accounts
for a large part of training energy, but Wake on LAN can be used to reduce the energy footprint for
periodic or on-demand workloads like federated learning. Time–energy trade-off can be exploited
for larger DNN models, as seen by the Pareto front, and our training time and energy prediction
models offer preliminary but important insights to help exploit the power modes.
We argue that accelerated Jetson edge devices are competitive candidates for DNN training.

However, effective use of these platforms requires careful tuning and possibly even a redesign of
the DNN training platform, which can be guided by our profiling and analysis.
Acknowledgments. We thank the members of the DREAM:Lab including H. Gupta for their help
with the paper. We acknowledge the constructive feedback from the reviewers and the shepherd.
The first author was supported by a PMRF Fellowship. This work was supported by a DST grant.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:21

REFERENCES
[1] Hazem A. Abdelhafez, Hassan Halawa, Karthik Pattabiraman, and Matei Ripeanu. 2021. Snowflakes at the Edge: A

Study of Variability among NVIDIA Jetson AGX Xavier Boards. In ACM EdgeSys Workshop.
[2] Hazem A. Abdelhafez and Matei Ripeanu. 2019. Studying the Impact of CPU and Memory Controller Frequencies on

Power Consumption of the Jetson TX1. In IEEE Intl. Conf. on Fog and Mobile Edge Comp. (FMEC).
[3] Assemblyai. 2022. TF v/s Pytorch. https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/.
[4] S. Baller, A. Jindal, M. Chadha, and M. Gerndt. 2021. DeepEdgeBench: Benchmarking Deep Neural Networks on Edge

Devices. In IEEE International Conference on Cloud Engineering.
[5] Yoshua Bengio. 2012. Practical recommendations for gradient-based training of deep architectures. In Neural networks:

Tricks of the trade. Springer, 437–478.
[6] Daniel J. Beutel, Taner Topal, Akhil Mathur, Xinchi Qiu, Javier Fernandez-Marques, Yan Gao, Lorenzo Sani, Kwing Hei

Li, Titouan Parcollet, Pedro Porto Buarque de Gusmão, and Nicholas D. Lane. 2020. Flower: A friendly federated
learning research framework. arXiv preprint arXiv:2007.14390 (2020).

[7] Keith Bonawitz, Hubert Eichner, Wolfgang Grieskamp, Dzmitry Huba, Alex Ingerman, Vladimir Ivanov, Chloé Kiddon,
Jakub Konečný, Stefano Mazzocchi, Brendan McMahan, Timon Van Overveldt, David Petrou, Daniel Ramage, and
Jason Roselander. 2019. Towards Federated Learning at Scale: System Design. In Proceedings of Machine Learning and
Systems, A. Talwalkar, V. Smith, and M. Zaharia (Eds.), Vol. 1. 374–388. https://proceedings.mlsys.org/paper/2019/file/
bd686fd640be98efaae0091fa301e613-Paper.pdf

[8] Shubham Chandel. 2022. Pytorch Model Summary. https://github.com/sksq96/pytorch-summary.
[9] Zachary Charles, Zachary Garrett, Zhouyuan Huo, Sergei Shmulyian, and Virginia Smith. 2021. On large-cohort

training for federated learning. Advances in Neural Information Processing Systems 34 (2021).
[10] Jiasi Chen and Xukan Ran. 2019. Deep Learning With Edge Computing: A Review. Proc. IEEE 107, 8 (2019), 1655–1674.

https://doi.org/10.1109/JPROC.2019.2921977
[11] John Chen, Cameron Wolfe, Zhao Li, and Anastasios Kyrillidis. 2022. Demon: Improved Neural Network Training

with Momentum Decay. In ICASSP 2022-2022 IEEE International Conference on Acoustics, Speech and Signal Processing
(ICASSP). IEEE, 3958–3962.

[12] Qi Chen, Wei Wang, Fangyu Wu, Suparna De, Ruili Wang, Bailing Zhang, and Xin Huang. 2019. A survey on an
emerging area: Deep learning for smart city data. IEEE Transactions on Emerging Topics in Computational Intelligence
(2019).

[13] Xiaohan Ding, Guiguang Ding, Jungong Han, and Sheng Tang. 2018. Auto-balanced filter pruning for efficient
convolutional neural networks. In Proceedings of the AAAI Conference on Artificial Intelligence, Vol. 32.

[14] Noah Golmant, Nikita Vemuri, Zhewei Yao, Vladimir Feinberg, Amir Gholami, Kai Rothauge, Michael W Mahoney,
and Joseph Gonzalez. 2018. On the computational inefficiency of large batch sizes for stochastic gradient descent.
arXiv preprint arXiv:1811.12941 (2018).

[15] Google. 2022. Dev Board datasheet. https://coral.ai/docs/dev-board/datasheet/.
[16] Google. 2022. Google Coral Products. https://coral.ai/products/.
[17] Hassan Halawa, Hazem A. Abdelhafez, Andrew Boktor, and Matei Ripeanu. 2017. NVIDIA Jetson Platform Characteri-

zation. In Euro-Par 2017: Parallel Processing. Springer International Publishing, Cham, 92–105.
[18] Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. 2016. Deep residual learning for image recognition. In

Proceedings of the IEEE conference on computer vision and pattern recognition. 770–778.
[19] Stephan Holly, Alexander Wendt, and Martin Lechner. 2020. Profiling Energy Consumption of Deep Neural Networks

on NVIDIA Jetson Nano. In 2020 11th International Green and Sustainable Computing Workshops (IGSC). 1–6. https:
//doi.org/10.1109/IGSC51522.2020.9290876

[20] Andrew Howard, Mark Sandler, Grace Chu, Liang-Chieh Chen, Bo Chen, Mingxing Tan, Weijun Wang, Yukun Zhu,
Ruoming Pang, Vijay Vasudevan, Quoc V. Le, and Hartwig Adam. 2019. Searching for MobileNetV3. In IEEE/CVF
International Conference on Computer Vision (ICCV). IEEE.

[21] Intel. 2022. Intel Movidius VPUs. https://www.intel.com/content/www/us/en/products/details/processors/movidius-
vpu.html.

[22] Sumin Kim, Seunghwan Oh, and Youngmin Yi. 2021. Minimizing GPU Kernel Launch Overhead in Deep Learning
Inference on Mobile GPUs. In Proceedings of the 22nd International Workshop on Mobile Computing Systems and
Applications (Virtual, United Kingdom) (HotMobile ’21). Association for Computing Machinery, New York, NY, USA,
57–63. https://doi.org/10.1145/3446382.3448606

[23] Dimitrios Kollias et al. 2018. Dimitrios Kollias and Athanasios Tagaris and Andreas Stafylopatis and Stefanos Kollias
and Georgios Tagaris. Complex & Intelligent Systems (2018).

[24] Alex Krizhevsky and Geoffrey Hinton. 2009. Learning multiple layers of features from tiny images. (2009).
[25] Navjot Kukreja, Alena Shilova, Olivier Beaumont, Jan Huckelheim, Nicola Ferrier, Paul Hovland, and Gerard Gorman.

2019. Training on the Edge: The why and the how. In 2019 IEEE International Parallel and Distributed Processing

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

https://www.assemblyai.com/blog/pytorch-vs-tensorflow-in-2022/
https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
https://proceedings.mlsys.org/paper/2019/file/bd686fd640be98efaae0091fa301e613-Paper.pdf
https://github.com/sksq96/pytorch-summary
https://doi.org/10.1109/JPROC.2019.2921977
https://coral.ai/docs/dev-board/datasheet/
https://coral.ai/products/
https://doi.org/10.1109/IGSC51522.2020.9290876
https://doi.org/10.1109/IGSC51522.2020.9290876
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu.html
https://www.intel.com/content/www/us/en/products/details/processors/movidius-vpu.html
https://doi.org/10.1145/3446382.3448606

44:22 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

Symposium Workshops (IPDPSW). 899–903. https://doi.org/10.1109/IPDPSW.2019.00148
[26] Abhishek Vijaya Kumar and Muthian Sivathanu. 2020. Quiver: An informed storage cache for deep learning. In 18th

{USENIX} Conference on File and Storage Technologies ({FAST} 20).
[27] Sampo Kuutti, Richard Bowden, Yaochu Jin, Phil Barber, and Saber Fallah. 2020. A survey of deep learning applications

to autonomous vehicle control. IEEE Transactions on Intelligent Transportation Systems (2020).
[28] Y. Lecun, L. Bottou, Y. Bengio, and P. Haffner. 1998. Gradient-based learning applied to document recognition. Proc.

IEEE 86, 11 (1998), 2278–2324. https://doi.org/10.1109/5.726791
[29] Jie Liu, Jiawen Liu, Wan Du, and Dong Li. 2019. Performance Analysis and Characterization of Training Deep Learning

Models on Mobile Device. In 2019 IEEE 25th International Conference on Parallel and Distributed Systems (ICPADS).
506–515. https://doi.org/10.1109/ICPADS47876.2019.00077

[30] man page. 2021. iostat. https://man7.org/linux/man-pages/man1/iostat.1.html.
[31] man pages. 2021. vmtouch. https://linux.die.net/man/8/vmtouch.
[32] Dominic Masters and Carlo Luschi. 2018. Revisiting small batch training for deep neural networks. arXiv preprint

arXiv:1804.07612 (2018).
[33] Peter Mattson, Christine Cheng, Gregory Diamos, Cody Coleman, Paulius Micikevicius, David Patterson, Hanlin Tang,

Gu-Yeon Wei, Peter Bailis, Victor Bittorf, David Brooks, Dehao Chen, Debo Dutta, Udit Gupta, Kim Hazelwood, Andy
Hock, Xinyuan Huang, Daniel Kang, David Kanter, Naveen Kumar, Jeffery Liao, Deepak Narayanan, Tayo Oguntebi,
Gennady Pekhimenko, Lillian Pentecost, Vijay Janapa Reddi, Taylor Robie, Tom St John, Carole-Jean Wu, Lingjie Xu,
Cliff Young, and Matei Zaharia. 2020. MLPerf Training Benchmark, Vol. 2. 336–349. https://proceedings.mlsys.org/
paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf

[34] Jayashree Mohan, Amar Phanishayee, Ashish Raniwala, and Vijay Chidambaram. 2021. Analyzing and mitigating data
stalls in DNN training. Proceedings of the VLDB Endowment (2021).

[35] Nvidia. 2021. Jetson AGX Xavier Developer Kit. https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-
kit.

[36] Nvidia. 2021. Jetson Nano Developer Kit. https://developer.nvidia.com/embedded/jetson-nano-developer-kit.
[37] Nvidia. 2021. Jetson NX Xavier Developer Kit. https://developer.nvidia.com/embedded/jetson-xavier-nx.
[38] Nvidia. 2021. Power modes for Nano. https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3261/index.html#page/

Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_nano.html#.
[39] Nvidia. 2021. Power modes for NX and AGX. https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3261/index.html#

page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#.
[40] Nvidia. 2021. Technical Brief: Nvidia Jetson AGX Orin. https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/

jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf.
[41] Nvidia. 2021. tegrastats. https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%

20Linux%20Driver%20Package%20Development%20Guide/AppendixTegraStats.html.
[42] Nvidia. 2022. Jetson AGX Orin Developer Kit. https://www.nvidia.com/en-us/autonomous-machines/embedded-

systems/jetson-orin/.
[43] papers with code. 2021. Mobilenet V3. https://paperswithcode.com/lib/torchvision/mobilenet-v3.
[44] Adam Paszke, Sam Gross, Francisco Massa, Adam Lerer, James Bradbury, Gregory Chanan, Trevor Killeen, Zeming

Lin, Natalia Gimelshein, Luca Antiga, Alban Desmaison, Andreas Köpf, Edward Yang, Zach DeVito, Martin Raison,
Alykhan Tejani, Sasank Chilamkurthy, Benoit Steiner, Lu Fang, Junjie Bai, and Soumith Chintala. 2019. PyTorch: An
Imperative Style, High-Performance Deep Learning Library. In Advances in Neural Information Processing Systems,
Vol. 32. https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf

[45] T Prabhakar, Nisha Bhaskar, Tejas Pande, and Chaitanya Kulkarni. 2014. Joule Jotter: An interactive energy meter for
metering, monitoring and control. In International Workshop on Demand Response, co-located with the ACM e-Energy.

[46] pytorch. 2021. TORCH.UTILS.DATA. https://pytorch.org/docs/stable/data.html.
[47] PyTorch. 2022. Cuda event. https://pytorch.org/docs/stable/generated/torch.cuda.Event.html.
[48] Prashanthi S. K, Aakash Khochare, Sai Anuroop Kesanapalli, Rahul Bhope, and Yogesh Simmhan. 2022. Workshop

on Parallel AI and Systems for the Edge - PAISE. In 2022 IEEE International Symposium on Parallel and Distributed
Processing, Workshops and Phd Forum (IPDPSW).

[49] Christopher J Shallue, Jaehoon Lee, Joseph Antognini, Jascha Sohl-Dickstein, Roy Frostig, and George E Dahl. 2018.
Measuring the effects of data parallelism on neural network training. arXiv preprint arXiv:1811.03600 (2018).

[50] Karen Simonyan and Andrew Zisserman. 2014. Very Deep Convolutional Networks for Large-Scale Image Recognition.
https://doi.org/10.48550/ARXIV.1409.1556

[51] Vladislav Sovrasov. 2021. Flops counter. https://pypi.org/project/ptflops/.
[52] TensorFlow. 2022. TFF GLDv2. https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/gldv2/

load_data.

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

https://doi.org/10.1109/IPDPSW.2019.00148
https://doi.org/10.1109/5.726791
https://doi.org/10.1109/ICPADS47876.2019.00077
https://man7.org/linux/man-pages/man1/iostat.1.html
https://linux.die.net/man/8/vmtouch
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://proceedings.mlsys.org/paper/2020/file/02522a2b2726fb0a03bb19f2d8d9524d-Paper.pdf
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-agx-xavier-developer-kit
https://developer.nvidia.com/embedded/jetson-nano-developer-kit
https://developer.nvidia.com/embedded/jetson-xavier-nx
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3261/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_nano.html#
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3261/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_nano.html#
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3261/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3261/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/power_management_jetson_xavier.html#
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://www.nvidia.com/content/dam/en-zz/Solutions/gtcf21/jetson-orin/nvidia-jetson-agx-orin-technical-brief.pdf
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/AppendixTegraStats.html
https://docs.nvidia.com/jetson/archives/l4t-archived/l4t-3231/index.html#page/Tegra%20Linux%20Driver%20Package%20Development%20Guide/AppendixTegraStats.html
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://www.nvidia.com/en-us/autonomous-machines/embedded-systems/jetson-orin/
https://paperswithcode.com/lib/torchvision/mobilenet-v3
https://proceedings.neurips.cc/paper/2019/file/bdbca288fee7f92f2bfa9f7012727740-Paper.pdf
https://pytorch.org/docs/stable/data.html
https://pytorch.org/docs/stable/generated/torch.cuda.Event.html
https://doi.org/10.48550/ARXIV.1409.1556
https://pypi.org/project/ptflops/
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/gldv2/load_data
https://www.tensorflow.org/federated/api_docs/python/tff/simulation/datasets/gldv2/load_data

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:23

[53] Rik van Riel. 2001. Page Replacement in Linux 2.4 Memory Management. In 2001 USENIX Annual Technical Confer-
ence (USENIX ATC 01). USENIX Association, Boston, MA. https://www.usenix.org/conference/2001-usenix-annual-
technical-conference/page-replacement-linux-24-memory-management

[54] Yu Wang, Gu-Yeon Wei, and David Brooks. 2019. Benchmarking tpu, gpu, and cpu platforms for deep learning. arXiv
preprint arXiv:1907.10701 (2019).

[55] Tobias Weyand, Andre Araujo, Bingyi Cao, and Jack Sim. 2020. Google landmarks dataset v2-a large-scale benchmark
for instance-level recognition and retrieval. In IEEE/CVF conference on computer vision and pattern recognition.

[56] Zhi Zhou, Xu Chen, En Li, Liekang Zeng, Ke Luo, and Junshan Zhang. 2019. Edge intelligence: Paving the last mile of
artificial intelligence with edge computing. Proc. IEEE (2019).

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

https://www.usenix.org/conference/2001-usenix-annual-technical-conference/page-replacement-linux-24-memory-management
https://www.usenix.org/conference/2001-usenix-annual-technical-conference/page-replacement-linux-24-memory-management

44:24 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

A APPENDIX
In Fig. 11 we plot the E2E time per Epoch in seconds (Y axis) against the Average Power in Watts (X
axis). This complements the plot in Fig. 8 (same as Fig. 12) which reports Total Energy Consumed
in milli-Watt hour (mWh). We see an inverse correlation between epoch time and average.

We reproduce Fig. 8 from the main text as Fig. 12 in the appendix. We further plot 4 variations of
this, each highlighting one of the resources changing (core count, CPU frequency, GPU frequency,
EMC memory frequency) and the impact each has on the time–energy trade-off and the Pareto
front. For each of these plots, we use a group of related markers to highlight a particular resource
value, e.g., solid markers for core count 8, hollow markers for core count 4 and line markers for
core count 2 in Fig. 13 where we focus on the effect of CPU cores. Similarly, Fig. 14 shows the effect
of CPU frequency, Fig. 15 the effect of GPU frequency and Fig. 16 the effect of memory frequency.
A.0.1 Impact of cores. The number of cores affects the stall time and kernel launch times. However,
this is not a significant component of the E2E time for larger models like MobileNet and ResNet
and only affects LeNet noticeably. For instance, the increase in cores from 𝑓 (+) to 𝑒(✚) causes a
sharp drop in E2E time and energy for LeNet as seen in Fig. 13.
A.0.2 Impact of CPU frequency. The CPU frequency affects the stall time and kernel launch time,
and therefore has a larger impact on LeNet’s E2E time than the other 2 models. This can be seen
from Fig. 14, where the E2E time values for LeNet corresponding to 2265𝑀𝐻𝑧 (solid red markers
with more than 3 sides) are much lower than those corresponding to 1200𝑀𝐻𝑧 (hollow red markers),
whereas for ResNet andMobileNet, the E2E time values of the solid green/blue markers are relatively
close to those of the hollow green/blue ones.
A.0.3 Impact of GPU frequency. Fig. 15 shows the overall impact that GPU frequency has on the
different models. GPU frequency affects the GPU compute time, and therefore the E2E time. This
impact is more pronounced for compute-intensive models such as ResNet. As seen in Fig. 15, for
ResNet, there is a significant difference in the E2E time values between the data points with a
higher GPU frequency of 900𝑀𝐻𝑧 (indicated by solid green markers with 3 or 4 sides) as compared
to those with a GPU frequency of 670𝑀𝐻𝑧 (hollow green markers). This difference is much lesser
for MobileNet, and even more so for LeNet.
A.0.4 Impact of memory frequency. Fig. 16 shows that memory frequency does have an impact on
E2E time and energy, but it is not a dominant factor. The impact of memory frequency can only be
seen in modes 𝑔 to 𝑗 , where all other parameters are kept constant. For instance, the increase in
memory frequency in going from ℎ(+) to 𝑖(♢) causes all 3 models to see a lower E2E time.

Received August 2022; revised October 2022; accepted November 2022

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

Characterizing the Performance of Accelerated Jetson Edge Devices for Training Deep Learning Models 44:25

0 5 10 15 20 25 30 35
Avg Power (W) [ResNet,MobNet, LeNet]
0

180

360

540

720

900

E2
E

Ti
m

e
/ e

po
ch

. (
se

cs
) [
Re

sN
et

,M
ob
N
et

,L
eN

et
]

LeNet
ResNet
MobNet

a
h

b
i

c
j

d
k

e
l

f
m

g
n

Fig. 11. Scatter plot of E2E time vs. Avg power
per epoch (1+), for power modes 𝑎–𝑛 of AGX for
LeNet (secondary axes) and ResNet/MobileNet
(primary axes). The yellow lines indicate the
Pareto front per DNN.

0 600 1200 1800 2400 3000
Energy Cons. (mWh) [ResNet,MobNet]
0

180

360

540

720

900

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Re

sN
et
,M

ob
N
et
]

LeNet
ResNet
MobNet a

h
b
i

c
j

d
k

e
l

f
m

g
n
0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

Fig. 12. Scatter plot of E2E time vs. Energy con-
sumed per epoch (1+), for power modes 𝑎–𝑛 of
AGX for LeNet (secondary axes) and ResNet/Mo-
bileNet (primary axes). The yellow lines indicate
the Pareto front per DNN. (Same as Fig. 8)

0 600 1200 1800 2400 3000
Energy Cons. (mWh) [ResNet,MobNet]
0

180

360

540

720

900

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Re

sN
et
,M

ob
N
et
]

LeNet
ResNet
MobNet a

h
b
i

c
j

d
k

e
l

f
m

g
n
0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

Fig. 13. Scatter plot and Pareto front of E2E time
vs. Energy consumed per epoch (1+) for AGX for
LeNet (secondary axes) and ResNet/MobileNet
(primary axes).
Markers are grouped by CPU Core Count.
Cores Marker

8 •b c ★d ✚e ✖g ■h
♦i ▲j �l ▼m �n

4 □a ♢k
2 +f

0 600 1200 1800 2400 3000
Energy Cons. (mWh) [ResNet,MobNet]
0

180

360

540

720

900

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Re

sN
et
,M

ob
N
et
]

LeNet
ResNet
MobNet a

h
b
i

c
j

d
k

e
l

f
m

g
n
0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

Fig. 14. Scatter plot and Pareto front of E2E time
vs. Energy consumed per epoch (1+) for AGX for
LeNet (secondary axes) and ResNet/MobileNet
(primary axes).
Markers are grouped by CPU Frequency.
CPU Freq.
(MHz) Marker

2265 •g h ✚i ✖j ■m ♦n
2100 ▲e �f
1200 ◦a Db □c ♢d
1036 +k ×l

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

44:26 Prashanthi S.K, Sai Anuroop Kesanapalli, and Yogesh Simmhan

0 600 1200 1800 2400 3000
Energy Cons. (mWh) [ResNet,MobNet]
0

180

360

540

720

900

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Re

sN
et
,M

ob
N
et
]

LeNet
ResNet
MobNet a

h
b
i

c
j

d
k

e
l

f
m

g
n
0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

Fig. 15. Scatter plot and Pareto front of E2E time
vs. Energy consumed per epoch (1+) for AGX for
LeNet (secondary axes) and ResNet/MobileNet
(primary axes).
Markers are grouped by GPU Frequency.
GPU Freq.
(MHz) Marker

1377 •g h ✚i ✖j
900 ♦c ▲d �e ▼f �n
670 ◦a □b
420 +k ×l ⋏m

0 600 1200 1800 2400 3000
Energy Cons. (mWh) [ResNet,MobNet]
0

180

360

540

720

900

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Re

sN
et
,M

ob
N
et
]

LeNet
ResNet
MobNet a

h
b
i

c
j

d
k

e
l

f
m

g
n
0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

0

18

36

54

72

90

E2
E
Ti
m
e
/ e

po
ch
. (
se
cs
) [
Le
N
et
]

0 60 120 180 240 300
Energy Cons. (mWh) [LeNet]

Fig. 16. Scatter plot and Pareto front of E2E time
vs. Energy consumed per epoch (1+) for AGX for
LeNet (secondary axes) and ResNet/MobileNet
(primary axes).
Markers are grouped by EMC memory Fre-
quency.
EMC Freq.
(MHz) Marker

2133 •g k ⋆l ✚m ✖n
1600 ■d ♦e ▲f �j
1333 ◦a Db □c ♢i
1066 +h

Proc. ACM Meas. Anal. Comput. Syst., Vol. 6, No. 3, Article 44. Publication date: December 2022.

	Abstract
	1 Introduction
	2 Background and Motivation
	2.1 Edge Accelerators
	2.2 DNN Training

	3 Related Work
	4 Experiment Setup
	4.1 Hardware Platform
	4.2 Software Platform
	4.3 DNN Models and Datasets
	4.4 Default Configuration
	4.5 Performance Metrics

	5 Results and Analysis
	5.1 Pipelined Training and Disk Caching
	5.2 Effect of Storage Media
	5.3 Effect of Mini-batch Size
	5.4 Variability across Device Instances and Epochs
	5.5 Effect of DVFS
	5.6 Baseload and Effect of Power Modes
	5.7 Predicting Training Time and Energy Usage for Custom Power Modes

	6 Discussion and Conclusion
	References
	A Appendix

