
Don’t Miss the Train: A Case for Systems Research
into Training on the Edge

Prashanthi S.K, Aakash Khochare, Sai Anuroop Kesanapalli, Rahul Bhope, and Yogesh Simmhan
Indian Institute of Science, Bangalore 560012, India

Email: {prashanthis, aakhochare, saiak, rahulbhope, simmhan}@iisc.ac.in

I. INTRODUCTION AND MOTIVATION

The rapid growth of Internet of Things (IoT) and au-
tonomous systems has led to the deployment of edge devices
close to the sensing data source for low-latency computation.
Besides data pre-processing and movement to the cloud, edge
devices ranging from Raspberry Pis to Nvidia Jetson with low-
power ARM processors are also used for inferencing tasks
using machine learning and Deep Neural Network (DNN)
models for domains like speech, computer vision and Au-
gumented/Virtual Reality [1]. There has also been systems
research into optimizing the inferencing performance on such
devices, including identifying optimal device configurations to
minimize latency, power and energy [2], and partitioning an
inferencing workload across heterogeneous devices [3].

Edge devices, however, are becoming more powerful by the
day while retaining their low power envelope, as is evident in
Figure 1 for Nvidia Jetson, Google Coral and Intel Movidius
edge accelerators in the last 7 years. E.g., Nvidia’s AGX Orin
will have 12 ARM Cortex A78AE CPU cores at 2 GHz and
a GPU with 2048 CUDA cores and 64 Ampere tensor cores
to deliver 200 TOPS of performance. With 64 GB of RAM
shared between CPU and GPU, this device is comparable to
an RTX 3060 Ti GPU workstation but with ≤ 50 W of peak
power and measuring 100mm x 87mm. Therefore, we posit
that accelerated edge devices are becoming competitive for
training DNN models as well, co-locating the compute with
local training data. This includes model training on a single
edge, as well as federated learning that is gaining prominence.

The current research into edge training is limited. In our
review of 77 papers on federated learning published between
2016–2021, only 19% of them use accelerated edge devices
and only 3 papers consider any systems research aspects.
Despite similarities, GPU edge devices have key hardware
differences compared to GPU servers, such as the use of
shared memory between CPU and GPU, low-power but slower
LPDDR memory, and diverse storage media like SD card,
eMMC and NVMe SSD. Energy minimization tends to be
a goal. Also, unlike latency-sensitive inferencing which only
involves the forward pass on the DNN, training workloads are
long running, use more memory and disk accesses due to large
training datasets, and involve heavier computation due to the
backward pass and iterative nature of training. Lastly, training
stresses all layers of the hardware – disk, memory, CPU, and
GPU, and the weakest link can be the bottleneck.

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

100

101

102

Pe
ak

 T
FL

OP
S/

TO
PS

 [L
og

]

TX1
TX2

TX2i
TX2
4GB

Nano

TX2
NX

NX NX
 16GB

Orin NX

AGX AGX Ind.
AGX 64GB

AGX Orin

EdgeTPU
(Coral)

Movidius
NCS

 Movidius
 NCS2

TFLOPS
TOPS

20
15

20
16

20
17

20
18

20
19

20
20

20
21

20
22

0

10

20

30

40

50

Pe
ak
 P
ow

er
 (W

at
ts
)

TX1
TX2
TX2i

TX2
4GB
Nano

TX2
NX

NX NX
 16GB

Orin NX
AGX

AGX Ind.

AGX 64GB

AGX Orin

EdgeTPU
(Coral)

Movidius
 NCS

 Movidius
 NCS2

Figure 1: Compute & power trends of accelerated edges
In this position paper, we explore the systems research

challenges offered by DNN training on accelerated edge de-
vices. Specifically, we examine the Nvidia Jetson devices, and
explore system tuning opportunities offered by frequency and
power controls, workload-specific hardware configurations,
utilizing shared memory effectively, minimizing data stalls,
etc. Our observations are based on first-hand experience with
20 Nvidia Jetson devices – Xavier AGX, Xavier NX, Nano,
TX2 and TX1 development kits which have 2-8 ARM cores
at 1.43-2.26 GHz, and a peak power of 10W–30W.

II. SYSTEMS RESEARCH CHALLENGES

1) Tuning frequency and power: Edge devices expose a
number of pre-defined power modes, with different mixes of
CPU, GPU and memory frequencies, peak power and number
of active CPU cores. In the Jetsons, users can also define
custom power modes with fine-grained control over these.
Dynamic Voltage and Frequency Scaling (DVFS) dynamically
alters the frequency of the GPU, CPU and memory to save
power. This can be disabled and the power-mode frequencies
set to the maximum to obtain the best performance.

However, given the wide parameter space, picking the
sweet-spot for such energy–latency trade-offs is challenging.
There can also be intelligence to dynamically switch frequen-
cies and power modes for different phases of the training
workload; any overheads for switching [2] are amortized over
the longer training periods. Further, from our experiments,
we also observe an interplay between these parameters. E.g.,
when training a small model like LeNet, the time for GPU
computation is affected by the CPU frequency. The latter
handles the GPU kernel launch, and the launch overheads are
significant compared to the kernel computation on the GPU.
So, there are research opportunities in detailed modeling of

the edge devices and characterization of deep learning (DL)
workloads for intelligent system configuration and scheduling.

2) Stalls in pipelined training: The typical training pipeline
has 3 stages that execute for every mini-batch in the epoch
– fetch data from disk, pre-process on CPU, and train on
GPU. DL frameworks like PyTorch allow these stages to
pipeline across mini-batches. However, pipelining benefits are
diminished on GPU servers if the system is not balanced and
GPU is often idle, stalling on the slower fetch and pre-process
stages [4]. We observe similar stalls when training on edge
devices, but they offer unique solutions.

A basic optimization is to enable pipelining in the DL
framework, e.g., by assigning separate workers for the fetch
and pre-process in PyTorch. Assigning multiple workers for
these stages may not necessarily offer more benefits. Here,
the relative performance of the storage media, CPU and GPU
come into play. From our experiments, we notice that for faster
storage like NVMe SSD, pipelining with a single worker is
sufficient to eliminate GPU stalls. But slower HDD needs more
workers for concurrent fetches. This also means that a slower
cheaper/higher capacity storage device, with more workers,
can match the performance of a faster costlier device. Stall
can also be hidden if there is sufficient memory to fit a large
part of the training data across epochs. We see that the OS
serves the data from the page cache. So, careful hardware
choices can save capital costs for large edge deployments.

3) Implications of shared memory: Jetson edge devices
share the RAM between CPU and GPU. This can provide more
RAM to the GPU – a Xavier AGX 64 GB has more memory
than even server-grade GPUs, albeit a slower LPDDR one.
This can also mitigate data movement costs from CPU memory
to GPU memory. However, due to the way memory is managed
by CUDA libraries, there may still be a copy involved.
This offers opportunities for systems research on memory
management by accelerator libraries. Recent systems advances
like unified memory can offer potential improvements, though
they currently suffer from data initialization overheads [5].

However, the more memory that the GPU uses, the less is
available for CPU-based tasks. With larger training models
that occupy more RAM, the OS page cache retains less of the
training data and this increases the fetch stalls. The default
caching policy in Linux, which relies on temporal locality,
is not well-suited for DL workloads where the same data
is accessed across epochs, but in different order. This offers
opportunities for alternate DL-sensitive caching strategies.

4) Device variability: A recent paper [6] indicated that
Jetson edge devices exhibit significant variability in inference
latency and power drawn across different instances of the
same device type. This can prevent stable performance for
inference tasks, and also affect reproducibility for systems
research. However, unlike DNN inferencing that runs in mil-
liseconds, training happens over minutes or hours and is less
affected by fine-grained variability. In our experiments with
training MobileNet on 3 AGX and 4 NX devices, the training
latency per epoch was consistent across device instances,
with a coefficient of variance < 1%. However, we observed

significant variability in training time with changes in the
software setup, e.g., OS and PyTorch versions. This requires
more careful analysis to get a conclusive outcome. In this
regard, standard DNN benchmarks like MLPerf, which have
profiles for training on workstations and HPC servers, but only
inferencing on the edge, need to be extended to profiles for
training on accelerated edges too. This can help uniformly
compare the performance across device types and instances.

5) Virtualization: Virtualization and containerization can
help with application packaging, resource and application
sandboxing, and multi-tenancy. Edge device types like the
Jetson Nano are resource constrained and containerization
using Nvidia’s JetPack and Docker will balance isolation and
performance. However, more powerful devices like the AGX
can benefit from virtualization through improved resource
utilization using multi-tenancy, e.g., training different models
on the same data. The Carmel cores of AGX support ARM
Virtualization Host Extensions (VHE) for hardware-assisted
CPU and memory virtualization. However, GPU virtualization
on the edge only supports serial time-shared access to the
GPU. A detailed study of the performance overheads of virtu-
alized or containerized training is warranted. In the absence of
true GPU virtualization, there is opportunity for research into
edge middleware that can schedule and overlap training across
containers or VMs while serializing access to the shared GPU.

III. CONCLUSIONS

In this paper, we have argued the need for sustained systems
research into fully exploiting the potential of accelerated edge
devices for DNN training, to balance power, performance and
cost. While we limited our exploration to optimized training
opportunities on a single Jetson-class edge for brevity, there
are many such opportunities on other edge accelerators like
Google Coral and Intel Movidius, and for distributed and
federated learning on such edge devices. Distributed training
frameworks can allow resource consolidation of disparate and
heterogeneous edge devices in a smart city for opportunistic
computing, and balancing performance, power and cost. Fed-
erated learning poses unique challenges of device selection
to minimize and synchronize training time across devices.
Accurate single-system modeling of an edge can help give
deterministic training time estimates for local training.

REFERENCES

[1] M. G. S. Murshed et al., “Machine learning at the network edge: A
survey,” ACM Comput. Surv., vol. 54, no. 8, 2021.

[2] H. A. Abdelhafez and M. Ripeanu, “Studying the impact of CPU and
memory controller frequencies on power consumption of the Jetson TX1,”
in IEEE Intl. Conf. on Fog and Mobile Edge Comp. (FMEC), 2019.

[3] L. Zeng, X. Chen, Z. Zhou, L. Yang, and J. Zhang, “CoEdge: Cooperative
DNN inference with adaptive workload partitioning over heterogeneous
edge devices,” IEEE/ACM Transactions on Networking, 2021.

[4] J. Mohan, A. Phanishayee, A. Raniwala, and V. Chidambaram, “Analyz-
ing and mitigating data stalls in DNN training,” PVLDB, vol. 14, 2021.

[5] Z. Wang, Z. Wang, C. Liu, and Y. Hu, “Understanding and tackling
the hidden memory latency for edge-based heterogeneous platform,” in
USENIX HotEdge, 2020.

[6] H. A. Abdelhafez, H. Halawa, K. Pattabiraman, and M. Ripeanu,
“Snowflakes at the edge: A study of variability among NVIDIA Jetson
AGX Xavier boards,” in ACM EdgeSys Workshop, 2021.

	Introduction and Motivation
	Systems Research Challenges
	Tuning frequency and power
	Stalls in pipelined training
	Implications of shared memory
	Device variability
	Virtualization

	Conclusions
	References

