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ABSTRACT

In this paper, we consider the problem of Federated Learning
(FL) under non-i.i.d data setting. We provide an improved es-
timate of the empirical loss at each node by using a weighted
average of losses across nodes with a penalty term. These
uneven weights to different nodes are assigned by taking a
novel Bayesian approach to the problem where the problem of
learning for each device/node is cast as maximizing the likeli-
hood of a joint distribution. This joint distribution is for losses
of nodes obtained by using data across devices for a given
neural network of a node. We then provide a PAC learning
guarantee on the objective function which reveals that the true
average risk is no more than the proposed objective and the er-
ror term. We leverage this guarantee to propose an algorithm
called Omni-Fedge. Using MNIST and Fashion MNIST data-
sets, we show that the performance of the proposed algorithm
is significantly better than existing algorithms.

Index Terms— Federated Learning, Neural Network,
Bayesian Approach, Distributed Machine Learning, PAC
Learning.

1. INTRODUCTION

A new paradigm in machine learning called Federated Learn-
ing (FL) enables edge-devices to collaboratively learn a
shared prediction model while keeping all the training data
securely at the device [1, 2]. There have been numerous
research works in FL leading to new applications and algo-
rithms [3, 4, 5]. It is particularly relevant for many wireless
applications, especially in the context of fifth generation (5G)
networks [3]. Implementing FL in practice imposes several
challenges such as stragglers, non-i.i.d data residing at het-
erogeneous edge-devices with varying computation power,
privacy concerns, and high communication cost between
edge-devices and a Federating Server (FS) [6]. This paper
primarily presents a systematic approach backed by theory
to address the problem of improving FL performance with
non-i.i.d data. A well known algorithm in the field of FL
is called Federated Averaging (FedAvg) [7]. This involves
exchange of Stochastic Gradient (SG) information computed

using local data to a central server, where an average is per-
formed. This average is sent back to all the nodes, where
a SG Descent (SGD) is performed to update the neural net-
work weights. Although, simple, it is known to diverge under
non-i.i.d setting [2]. Further, this approach returns a single
model for all the nodes. The authors in [8] consider the prob-
lem of Multi-task Learning (MtL) in terms of finding Pareto
optimal solutions. However, the question that arises is how
do we know a priori that there exists a trade-off between the
tasks? Also, the paper does not provide any theoretical guar-
antee on the performance. The concept of task-dependent
uncertainty in a multi-task setting is considered in [9]. They
show that the task uncertainty captures the relative confi-
dence between tasks, reflecting the uncertainty inherent to
the regression or classification task. They derive a multi-task
loss function based on maximising the Gaussian likelihood
with homoscedastic uncertainty. Although, the experimental
results are promising, the algorithm is heuristic, and there are
no guarantees proved.

In [10], the authors introduce two novel strategies to
reduce communication costs arising due to heterogeneity
of edge networks viz., lossy compression and Federated
Dropout. A new compression framework that is specifi-
cally designed to meet the requirements of the federated
learning environment using sparse ternary compression is
proposed in [11]. Hao et al. [12], propose an efficient and
privacy-enhanced FL (PEFL) scheme for industrial artificial
intelligence. A large body of existing work assumes that the
data is i.i.d, and hence the stochastic gradient obtained using
samples from the nodes results in an unbiased estimate. How-
ever, this assumption is not true in many applications, and the
performance degradation of the algorithms based on i.i.d as-
sumption can be severe [6]. Typically, the co-efficient in the
loss function is chosen in proportion to the data residing at
the device [13] or the “worst case co-efficient” as in the case
of agnostic FL [14]. This may not efficiently handle the non-
i.i.d data very well. The authors in [6] proposed a method to
overcome this statistical challenge of non-i.i.d data. Another
potential solution for this is to use Multi-task Learning (MtL)
methods such as MOCHA as proposed in [15]. However,
the approach taken in the MtL is heuristic based, and hence



the penalty term, although appropriate for many applications,
there are no general guarantees. A systematic approach to
MtL is provided in [16]. But the algorithm is centralized,
meaning the entire data needs to be communicated, and fur-
ther, the convergence guarantee is not provided.

In our work, we consider a federated setup (see Section 2)
with N devices/nodes and a central server with a goal of find-
ing device application specific neural network. An improved
estimate of the empirical loss at each node is obtained by us-
ing a weighted average of losses across nodes with a penalty
term. These uneven weights to different nodes are obtained
by taking a Bayesian approach to the problem. In particular,
we motivate the approach by assuming that the joint distribu-
tion of losses of node i, i = 1, 2, . . . , N obtained by using
data across devices for a given neural network of node i fol-
lows an independent exponential distribution with certain rate
(or weight). The problem of learning amounts to maximizing
this joint distribution (see Section 2.1); which results in the
objective that is a weighted sum of losses with penalty. We
then provide a Probably Approximately Correct (PAC) learn-
ing guarantee on the objective function (see Section 3) that
we use to design our algorithm called Omni-Fedge (see Sec-
tion 4). Finally, we present some results on the performance
of Omni-Fedge using MNIST and Fashion MNIST data-sets
(see Section 5). We show that the proposed algorithm not
only outperforms the existing federated algorithms but also
requires less communication rounds to achieve a given accu-
racy.

2. PROBLEM SETTING

We consider a federated system with N edge-devices/nodes
that can communicate with one central server. Each edge-
device i = 1, 2, . . . , N is assumed to have collected ni data
points with j-th feature vector denoted by Xij ∈ X with the
corresponding label yij ∈ Y , j = 1, 2, . . . , ni. Let zi :=
{zij = (Xij , yij) : Xij ∈ X , yij ∈ Y, j = 1, 2, . . . , ni}. We
assume that the data points are independent but not necessar-
ily identically distributed across edge-devices. Further, we
assume that the data at edge-device i = 1, 2, . . . , N is sam-
pled from a distributionDi. The task of each edge-device is to
find a neural network denoted by weights θ ∈ Θ ⊆ Rd that
results in the minimum average risk. The risk is defined in
terms of a loss function Li : Z × θ → R+, i = 1, 2, . . . , N ,
where Z := X × Y . Here, the loss function is assumed to
be bounded by lmax > 0. Given this loss as a metric, the
edge-device i would like to solve the following optimization
problem

min
θ

Ezi∼Di {Li(zi,θ)} . (1)

Since the distribution is unknown, a natural way is to use an
estimate of Ezi∼Di

{li(zi,θ)} as a proxy in (1). An estimate
is given by ÊLi(zi,θ) := 1

ni

∑ni

j=1 Li(zij ,θ). However, if
the data across edge-devices are statistically closer, it is ad-

vantageous to exploit it to get a better estimate, and hence a
better overall performance. A well known algorithm called
FedAvg computes the neural network weights locally using
the estimate in (1), and the central server computes an aver-
age of the weights, and broadcasts it to all the edge devices.
This has number of disadvantages. First, it gives equal weight
to all the edge devices, which may result in sub optimal per-
formance. Further, all the edge devices need to use the same
neural network, which may not be tuned to its application. A
natural way of overcoming this is to put uneven weights for
different nodes while computing an estimate of the average
loss. A motivation for the weighing scheme proposed in the
paper is provided next.

2.1. Motivation and Problem Statement

The motivation for the objective proposed in this paper comes
from the Bayesian approach to the problem. Given the data
set zjk, k = 1, 2, . . . , nk, the loss function at the edge de-
vice j = 1, 2, . . . , N using neural network with weights
(θi,θ

(sh)) be denoted by Lijk := Lj(zjk,θ
(i),θ(sh)),

i = 1, 2, . . . , N . Here, the neural network weights are divided
into two parts, viz, shared and task specific. The shared neural
network weights will be learnt in a manner that minimizes the
overall error while θi will be fine tuned to meet edge device
specific requirements. The two neural networks are con-
catenated to obtain the full neural network. For a given edge
device i, conditioned on weightsωi := (ωi1, ωi2, . . . , ωiN ) ∈
RN

+ , assume that the joint distribution of these losses f(Lijk :
j = 1, 2, . . . , N, k = 1, 2, . . . , nj |ωi) are drawn indepen-
dently according to ΠN

j=1Π
nj

k=1f(lijk|ωi), where f(lijk|ωi) =
ωijexp{−ωijLijk}. Note that the joint distribution of the
losses depends on the neural network weights. For brevity,
we use Qθ(i),θ(sh) and Pθ(i),θ(sh) , i = 1, 2, . . . , N to denote
the probability measure corresponding to the above indepen-
dent exponential distribution and the true joint distribution,
respectively. Note that the distribution Pθ(i),θ(sh) is induced
by Di. Using this in the expression for the joint distribution,
we get ΠN

j=1Π
nj

k=1ωijexp
{
−
∑N

j=1

∑nj

k=1 ωijLijk

}
. In this

case, the problem of learning amounts to finding θ(i), θ(sh)

and ωi for all the devices that maximize the above likelihood.
In other words, this results in the following problem

min
ωi,θ(i),θ(sh)

N∑
j=1

ωijÊLj(zj ,θ
(i),θ(sh))−

N∑
j=1

logωij , (2)

where ÊLj(zj ,θ
(i),θ(sh)) := 1

nj

∑nj

k=1 Lijk is the average
loss at the j-th node using the neural network of the i-th node,
i.e, (θ(i),θ(sh)). The second term above can be thought of as
a penalty term. The performance obtained using the neural
network obtained by solving the above problem in compari-
son with the problem in (1) needs to be investigated, which is
the essence of the following section.



3. THEORETICAL GUARANTEES

In this section, we provide a Probably Approximately Correct
(PAC) learning guarantee on the objective function that will
be used to design our algorithm. Towards stating our main
result, we need the following definition. A few notations are
in order. We use L̃ijk ∼ Qθ(i),θ(sh) to denote that the random
variable is sampled from the distribution Qθ(i),θ(sh) .

Definition 3.1 (log− exp Complexity). Let θ(i) and θ(sh) be
a family of weights corresponding to task/edge specific and
shared neural networks, respectively. The log− exp com-
plexity of the neural network with respect to the distribution
Qθ(i),θ(sh) (Q for short) for i = 1, 2, . . . , N is defined as

Ri(θ) := logEQ sup
θ(i),θ(sh)

exp
{
Ez∼DiLi(z,θ

(i),θ(sh))
}

ΠN
j=1ÊLj(zj ,θ(i),θ(sh))

.

(3)

We now present the main result of the paper. Based on
the result below, an algorithm for federated learning will be
proposed.

Theorem 1 (PAC bound). For a given neural network θ, and
the log− exp complexity, the following bound holds with a
probability of at least 1− δ, (δ > 0)

inf
θ

Ezi∼Di
{Li(zi,θ)} ≤ inf

θ(sh)

[
Obji(θ

(sh)) +Ri(θ)

+ sup
θ(i),θ(sh),ωi

KL(Q||P ) + lmax

√√√√ N∑
j=1

ω2
ij

2n2j
log

(
1

δ

)
−N

]
,

where KL(Q||P ) is the KL-divergence between two joint dis-
tributions Q and P , Obji(θ

(sh)) :=

inf
ωi

N∑
j=1

[
ωij inf

θ(i)
ÊLj(zj ,θ

(i),θ(sh))− logωij

]
. (4)

Proof: See Appendix (section 6).
The above theorem suggests that the true average risk is

no more than the proposed objective and the error term. The
error term is in terms of KL divergence between the exponen-
tial distribution presented in the previous section, and the true
distribution of the losses for a fixed (worst case) neural net-
work weights. In other words, if the true distribution is close
to the independent exponential distribution, then the error in
terms of KL is small, as expected. Further, the error also de-
pends on the log− exp complexity. The last term in the above
equation indicates that higher weights correspond to higher
error. This will be used as a regularizer while designing the
algorithm, which is explained in the next section.

4. PROPOSED FEDERATED ALGORITHM
(OMNI-FEDGE)

The main result suggests that the average loss can be mini-
mized by minimizing Obji(θ

(sh)) with respect to θ(sh) while

keeping the regularizer term under control. Optimizing over
both shared and task specific neural network weights can be
split into the following two steps

1. Given a shared neural network weights θ(sh), each de-
vice can use its data to solve minθ(i) ÊLj(zj ,θ

(i),θ(sh))
to obtain the task specific neural network weights θ(i),
i = 1, 2, . . . , N .

2. Given the task specific weights, the first step is to
solve the optimization problem in (4). This results in
Obji(θ

(sh)). Minimizing this over θ(sh) results in the
shared neural network weights.

The above two steps need to be iterated until convergence.
However, the implementation needs to be done in a distributed
fashion. A pseudo code for the same is provided in Algorithm
1. The first step above corresponds to step 5 of the algorithm.
A standard gradient descent algorithm can be used to imple-
ment this step. The second step corresponds to steps 6 to 11
of the algorithm. It is important to note that steps 10 and 11
compute a sum of gradients and broadcast rather than sending
each gradient separately. This saves in terms of computation
as well as communication complexity. In the following sec-
tion, we present the experimental results.

Algorithm 1: Omni-Fedge

1 Omni-Fedge():
2 INITIALIZE θsh and BROADCAST (BC) to all nodes
3 for t ∈ {1, 2, . . . . . .} do
4 for i = 1, 2, . . . , N do
5 θ

(i)
t = arg minθ(i) ÊLi(zi,θ

(i),θ(sh))

6 Each device i BCs θ(i)t to all other nodes
l = 1, 2, . . . , N through FS.

7 COMPUTE AND SEND ÊLi(zi,θ
(j),θ(sh))

to all nodes.
8 Minimize-Objective()
9 to get ωi for all i.

10 At each node, COMPUTE∑N
j=1 ω

∗
ji∇θ(sh)

t
ÊLi(zi,θ

(j),θ(sh)) and
BC it to all nodes through FS.

11 Perform GRADIENT UPDATE

θ
(sh)
t+1 := θ

(sh)
t −ηcomγ(i)t , where γ(i)t :=

1
N

( N∑
l=1

N∑
j=1

ω∗jl∇θ(sh)
t

ÊLl(zl,θ
(j),θ(sh))

)
12 GO TO step 3.

13 Minimize-Objective():
14 COMPUTE ω∗i =

arg minωi

(∑N
j=1 ωijÊLj(zj ,θ

(i),θ(sh))−

log
∏N

j=1 ωij

)



5. EXPERIMENTAL RESULTS AND CONCLUSIONS

The experiments are carried out using MNIST [17] handwrit-
ten data set and FMNIST [18] fashion data set, with 5 nodes
and a central FS. Both MNIST and FMNIST have 60, 000
training examples and a test set of 10, 000 examples each.
Each example is a 28 × 28 grayscale image, associated with
labels from 10 classes. The table below shows the split be-
tween training and test data. The non-i.i.d case is emulated
using a non-uniform sampling of data from the MNIST and
FMNIST data sets. The data samples assigned to each node
are further divided into 100 batches, and batch-wise training
is performed. The proposed algorithm is compared with (i)
local training; training using local data only, and (ii) FedSGD.
In FedSGD, the gradient is averaged, and one neural network
is used across all the devices. Fig. 1 shows the performance
of the proposed algorithm compared with the above men-
tioned algorithms/methods for both training and test data. It
is clear from the figures that the proposed outperforms local
and FedSGD for both i.i.d and non-i.i.d scenarios. It was also
observed during the experiments that the algorithm results
in higher weights for more relevant nodes, and under i.i.d
case, the proposed algorithm allocates equal weights across
all the nodes corroborating our intuition. To conclude, we
considered the problem of FL under a non-i.i.d data setting
and provided a sound theoretical framework for the pro-
posed algorithm based on a novel Bayesian approach. We
also introduced a new complexity measure as a consequence
of the PAC bound. As evident from the experimental re-
sults, performance of the proposed algorithm is significantly
better than existing algorithms with better generalization.

Type of Data Training samples
per node

Testing samples
per node

MNIST i.i.d 622 778
MNIST non-i.i.d 673 842
FMNIST i.i.d 622 778
FMNIST non-i.i.d 331 414

6. APPENDIX

Proof. Consider the following difference for i = 1, 2, . . . , N

Φi(Z) := sup
θ(i),θ(sh),ωi

[
Ez∼DiLi(z,θ

(i),θ(sh))−
∑N

j=1

ωijÊLj(zj ,θ
(i),θ(sh))+

∑N
j=1 logωij

]
, where Z is the data

at all the nodes. Let Z ′
be such that it differs from Z at only

one place and |Φi(Z) − Φi(Z
′
)| ≤ ωij lmax

nj
. By applying

McDiarmid’s inequality, with a probability of at least 1 − δ
(δ > 0), the following holds for all θ(sh) and θ(i)

sup
θ(i),θ(sh),ωi

[
Ez∼Di

Li(z,θ
(i),θ(sh))−

∑N
j=1 ωijÊLj(zj ,θ

(i),

θ(sh)) +
∑N

j=1 logωij

]
≤ E

[
sup

θ(i),θ(sh),ωi

[
Ez∼Di

Li(z,θ
(i),

(a) MNIST non-i.i.d (b) MNIST i.i.d

(c) FMNIST non-i.i.d (d) FMNIST i.i.d

Fig. 1. Plots of Average Accuracies vs Communication
Rounds for Omni-Fedge and FedSGD

θ(sh))−G(ω)
]]

+ lmax

√∑N
j=1

ω2
ij

2n2j
log

1

δ
, where G(ω) :=∑N

j=1(ωijÊLj(zj ,θ
(i),θ(sh)) − logωij). By optimizing

over ωij , sup
ωi

G(ω) = N +
∑N

j=1 log ÊLj(zj ,θ
(i),θ(sh)).

Applying Fenchel-Young inequality to E
[

sup
θ̄(i)

[
∆(θ̄(i))

]]
(see [19]), where ∆(θ̄(i)) := Ez∼Di

Li(z,θ
(i),θ(sh)) −∑N

j=1 log ÊLj(zj ,θ
(i),θ(sh)) and θ̄(i) := (θ(i),θ(sh)).

Now, pulling the supremum inside the summation, we get
Ez∼Di

Li(z,θ
(i),θ(sh)) ≤

∑N
j=1 ωijÊLj(zj ,θ

(i),θ(sh)) −∑N
j=1 logωij + sup

θ(i),θ(sh)

[
KL(Q||P )

]
+

logE
[

sup
θ(i),θ(sh)

exp
{
Ez∼Di

Li(z,θ
(i),θ(sh))

}
ΠN

j=1ÊLj(zj ,θ(i),θ(sh))

]
+ lmax√∑N

j=1

ω2
ij

2n2j
log

1

δ
− N . Since this holds for all θ(sh), θ(i)

and ωi, taking infimum over these proves the theorem.
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