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Abstract—Deep Learning (DL) models have had a significant
impact on domains like autonomous vehicles, urban safety and
Internet of Things (IoT) by enabling low-latency inferencing
on edge computing devices, close to the data source. With the
massive growth in sensor and camera data from such domains,
the need to maintain freshness of models through retraining, and
the heightened attention to privacy, training of DL models on
GPU-accelerated low-power edges like NVIDIA Jetson through
techniques like federated learning is gaining importance. Such
training is resource-intensive and can stress the capacity of an
edge’s resources like GPU, CPU, memory and storage. While
previous studies have profiled the resource usage and identified
bottlenecks of ML workloads on accelerated Cloud VMs and
server, such a characterization has been absent for edge devices
whose field-deployments are rapidly increasing. In this work,
we closely examine a ML model training on the Nvidia Jetson
Xavier AGX and Xavier NX. We vary several training and device
parameters such as dataset size, I/O threads and storage device,
and measure the CPU and GPU compute time and utilization,
fetch stalls, and end-to-end time to understand the bottlenecks in
the training pipeline. Our analysis identifies several interesting
insights on the effect of storage medium and caching on the
training time in the edge.

I. INTRODUCTION

Deep Learning (DL) models find application in a variety
of contemporary domains such as Autonomous Vehicles [1],
Smart cities [2] and Healthcare [3]. They help inference over
video data for drones navigation, allow safety cameras to
identify suspicious activities, and examine images for medical
diagnostics. Fast inferencing close to the data source is enabled
through a growing class of accelerated edge devices such as
NVIDIA Jetson and Google Coral which host low-end GPUs
and TPUs along with ARM CPUs and a compact form-factor
to offer a superior performance-to-energy ratio. For instance,
the Nvidia Xavier AGX development kit has a 512-core Volta
GPU, an 8 core ARM CPU and 32GB of LPDDR4x memory,
operates within 65W of power and costs US$700.

Recently, there has been a push toward training DL models
on the edge. This is driven by the massive growth in data
collected from edge devices, the need to refresh the models
periodically, the bandwidth constraints in moving all this data
to Cloud data centers for training, and a heightened attention
to privacy by retaining data on the edge. This has led to
techniques like federated and geo-Distributed learning [4] that
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train local models on a device and aggregate the models on a
central server to build a global model. The local training phase
iteratively optimizes the model parameters with the objective
of minimizing a loss function.

This proliferation of DL model training has led to an
increasing interest in scrutinizing the systems’ characteristics
of such workloads to help identify bottlenecks, optimize the
training parameters and even to choose the machine configura-
tion. However, this has been largely limited to evaluating their
performance on GPU-accelerated Cloud VMs and servers [5],
[6], with minimal investigations of edge devices. Edge devices
have several unique characteristics – a limited sized RAM,
often shared between GPU and CPU, and diverse storage
media such as SD cards, EMMC and NVME. So, under-
standing the bottlenecks unique to edge devices is essential
to design frameworks and systems which optimally utilize the
constrained hardware resources. This can also help in making
informed design choices on selecting the configuration of edge
devices that are tailored for DL workloads.

In this paper, we conduct detailed experiments using the
current-generation Nvidia Jetson Xavier AGX and NX edge
platforms and representative DL models and datasets to make
the following contributions:

1) We understand the effect of parallel data fetch and
pipelining of data access and pipelining on overall train-
ing time

2) We characterize the impact of the storage medium and
disk caching on data fetch stalls

Our analysis is used to draw insights on different device tuning
parameters and device configurations that can improve the DL
training time.

II. EXPERIMENT METHODOLOGY

A. Hardware Platforms

1) Jetson Devices: We perform our experiments on two
Nvidia Jetson edge device developer kits: AGX Xavier [7] and
Xavier NX [8]. These are detailed below. The CUDA version
used is 10.2. We use Jetpack version 4.5.1 with L4T(Linux
for Tegra) version 32.5.1 and kernel version 4.9.201-tegra

2) Storage Media: These edge devices offer connectivity to
different storage devices. Since training can be I/O intensive,
we perform experiments on three different storage media –



Table I: Default Device Specifications of Nvidia Jetsons

Feature AGX NX

CPU Cores 8 6
CPU Clockspeed (MHz) 2188 1500
GPU Clockspeed (MHz) 677 800
GPU Architecture Volta Volta
RAM (GB) 32 8
Power Budget (W) 15 10

Figure 1: DL Training pipeline stages on PyTorch

SSD over a NVMe/PCIe interface, HDD over a USB interface,
and SD card.

B. Software Platform

The ML training pipeline has three stages – fetch, pre-
process and compute. The data is first fetched from the storage
device to the main memory in batches. Then the pre-processing
operations such as crop/resize are performed on the CPU.
Finally, the actual training over the data is done on the GPU
in the compute stage. Training is done iteratively over many
epochs till convergence. In each epoch, we load data in batches
and each batch passes through the above pipeline. The model
weights are updated at the end of every batch. The subset
of the data used in each batch is randomized across different
epochs. As we will see, this limits data locality and affects
caching. Thus, the training pipeline involves multiple resources
– storage, memory, CPU and GPU – all of which must be
carefully tuned, especially on a constrained edge device, to
avoid bottlenecks and reduce overall training time.

We use the PyTorch DL framework [9] for training the
model, and the PyTorch Dataloader [10] to fetch and pre-
process data. The dataloader performs the data fetch from disk
followed by pre-process sequentially within a worker. We use
the num_workers flag to vary the number of processes used
to perform the fetch/pre-process. When num_workers=0,
a single process performs fetch, pre-process and compute
sequentially; this prevents pipelining. When num_workers
≥ 1, Pytorch spins up that many processes for fetch/pre-
process, each operating on a different batch of data in parallel,
and a separate process invokes the GPU compute on each pre-
processed batch sequentially. This forms two-stage pipeline of
fetch/pre-process followed by compute.

C. DL Model and Dataset

1) Dataset: We use images from the Google Landmarks
Dataset [11] for training. By default, we use the standard 23k
version of the GLD dataset (GLD-23k), which has ≈ 23, 080
images with a total size of 2.8 GB. Each image file has a
resolution of 800× 600 with an average size of 100 kB.
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Figure 5: E2E Time | AGX

2) Model: We use MobileNetV3-Large [12] image analysis
model for training. It is a lightweight model intended for
mobile devices, auto-tuned using hardware-aware Network
Architecture Search (NAS). The network comprises of conv2d
layer, several bottleneck blocks followed by a pooling layer,
culminating in two conv2d layers with no batch normal-
ization. These suite of layers are drawn from its previous
versions - MobileNetV1 [13], MobileNetV2 [14] and Mnas-
Net [15], which includes squeeze and excitation into the
bottleneck structure, and are upgraded with modified swish
non-linearities.

3) Training Parameters: We use a batch size of 16 images
unless mentioned otherwise. The learning rate and momentum
are set to 0.01 and 0.9, respectively. We use Stochastic
Gradient Descent (SGD) as the optimizer, and use cross-
entropy as the loss function. We run all our experiments for
3 epochs of training since that is adequate to understand
and generalize the performance behavior. Also, for some
configurations, each epoch runs for over 93 minutes. We do
not include a testing phase in our experiments as we are not
training till convergence.

III. RESULTS AND ANALYSIS

Metrics. We use a variety of Linux utilities to measure
various system resources. CPU, GPU and RAM utilisation are
measured using the tegrastats [16] utility from Nvidia
every 1 second. I/O metrics such as read IOPS and bytes read
per second (throughput) are measured using iostat [17].
The fraction of the dataset that is present in the Linux (in-
memory) disk cache is measured using vmtouch [18].

Additionally, we measure the fetch stall time and the
GPU compute time for every batch. Fetch stall time is the
visible time taken to fetch and pre-process data and does not
overlap with the GPU compute time, i.e., max(fetch time +



pre-process time−GPU compute time, 0). GPU compute time
is the time taken by the batch to execute on the GPU and
includes the forward and backward passes of training. We
measure these times using the torch.cuda.event with
the synchronize option so that time captured is accurate.
We sum up the fetch stall and GPU compute times over all
batches to obtain the per-epoch fetch stall time and compute
time, which we report in our analyses. We also measure the
End-to-End (E2E) time to process all batches of each epoch,
and this includes the fetch stall time, compute time and also
any other framework overheads. The power mode for the AGX
is MAXN (i.e., there is no power budget constraint and it can
consume the peak rated 65W), and for NX it is 15W and using
6 CPU cores. In all our plots, we report the median fetch stall,
compute time and E2E epoch times.

A. Pipelining reduces fetch stalls, and hence E2E time.
Fetching data and pre-processing involve the CPU, while

compute is entirely done on the GPU. If these are executed
sequentially, the GPU remains idle while it waits for the CPU
to finish fetching and pre-processing data. By pipelining the
fetch/pre-process with compute, the stall time reduces from
the entire fetch/pre-process time to just (fetch/pre-process -
compute). Pipelining is enabled by increasing the number of
workers in the PyTorch Dataloader to ≥ 1.

Figs. 2 and 3 report the median fetch and pre-process stall
time, i.e., the duration for which the compute process was idle
waiting for a batch to be ready, and the E2E time as the number
of workers increases from 0 (no pipelining) to 4 (4 parallel
fetch/pre-process workers pipelining to 1 compute process),
for the NX device. Figs. 4 and 5 show the same for AGX. We
focus on the increase from 0 to 1 worker here.

The effect of pipelining can be seen from the reduction
in cumulative fetch stalls per epoch and end to end times.
For the NX, when the number of workers increases from 0
to 1, the fetch stall reduces from (704, 502, 455 secs) to
(173, 18.4, 18.6 secs) for the HDD, SD, and SSD, respectively
(Fig. 2). Notably, just introducing pipelining by going from 0
to 1 worker offers a significant improvement, and decreases
the stall time by 3.1× for the HDD, 26.2× for the SD card,
and 23.4× for the SSD. We see a consequent decrease in the
E2E epoch time from (1226, 1027, 980 secs) to (713, 599,
595 secs) for the HDD, SD and SSD respectively (Fig. 3).

For the AGX, in Fig. 4, by introducing pipelining, the
fetch stalls reduce from (317, 311, 309 secs) to (14.7, 14.6,
14.5 secs) for the HDD, SD card and SSD – a substantial de-
crease in time of (20.56×, 20.3×, 20.31×). Correspondingly,
in Fig. 5, the E2E time drops from (605, 598, 597 secs) at 0
workers to (308, 305, 309 secs) with 1 worker.

All the storage media see an equal decrease in time on
the AGX because the dataset is entirely present in the in-
memory disk cache for the second and third epochs, and fetch
stalls occur only in the first epoch where accesses go to the
disk. However, NX has more limited RAM and the entire data
does not fit in cache, causing repeated fetches from disk for
each epoch. We also observe a lower GPU utilization with 0

workers, with median values of 0%, 19% and 61% for HDD,
SD and SSD, respectively, on the NX, which increases to 99%
with pipelining.

B. Parallelization of fetch may give further improvements
depending on the storage medium and device.

Number of workers can be increased beyond 1 to fetch
and pre-process data in parallel across batches. This could
potentially reduce the fetch stall time and provide an added
benefit over just pipelining with 1 worker. But realizing this
benefit depends on the storage medium and the edge device.

1) Parallel fetch has greater benefits for a slower storage
medium such as HDD: As seen from Fig. 2 for NX on the
HDD, increasing number of workers from 1 to 2 reduces the
fetch stall time from 173.8 secs to 18.9 secs, a reduction of
8.19×. However, for faster devices such as the SD card and
SSD, going from 1 worker to 2 has no additional benefits
since the fetch/pre-process of a single batch is fast enough
to keep the NX’s GPU compute occupied in processing that
batch through pipelining, and the compute fully hides the fetch
time.

2) Parallel fetch has greater benefits for a device with a
faster GPU relative to the disk: As the GPU on a device gets
faster, the gap between CPU compute time and the fetch/pre-
processing time widens, dominated by the disk I/O time. As
a result, having 1 worker may not be sufficient to mitigate
the fetch stall time. Increasing the number of workers has
benefits here. For the AGX on the HDD and SD card, 1 worker
cannot fully fill the input pipeline of the GPU compute. For the
SD card, the fetch stall time in the first epoch reduces from
134 secs with 1 worker to 12.3 secs with 2 workers. For
the HDD, the fetch stall time in the first epoch reduces from
408.2 secs with 1 worker to 223.9 secs with 2 workers and
reduces further to 115.4 secs with 4 workers. We report only
first epoch times here because the dataset is entirely cached
in RAM, and only the first epoch times are reflective of disk
access.

C. A storage medium whose fetch time can be hidden by
the compute time is sufficient. Having a medium faster than
that offers no additional benefits.

In Fig. 2, using parallel fetch with 2 workers on the NX,
the fetch stall time of the HDD is almost entirely hidden
by the compute time. Using an SSD/SD card which have
faster I/O speed does not give us any additional benefits. All
three storage media have comparable E2E epoch times of
≈ 590 secs with 2 workers (Fig. 3). On the AGX using 2
workers (Fig. 4), the SD card has fetch stalls comparable to
the SSD (14 and 13 secs respectively) and is sufficient.

D. Having a large enough RAM and consequently disk
cache can compensate for a slower storage medium.

The Linux disk cache uses the available free RAM to retain
recently fetched files in-memory. If all the dataset required for
training in an epoch is already present in the cache, then the
accesses goes to RAM and not the disk beyond the first epoch
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Figure 8: % of Train Dataset in Cache and E2E Time | NX

when the cache is initially populated. Since training typically
runs over a number of epochs, the penalty for loading from
disk in the first epoch is amortized over the subsequent epochs
where accesses is completely from RAM. This is observed for
the AGX, which has 32 GB of RAM and is sufficient to fit
the 2.8 GB of training data fully in disk cache. So using a
slower storage medium such as HDD has no penalty beyond
the first epoch. E.g., in the first epoch, we observe E2E times
of around (1060, 925, 620 secs) for (HDD, SD card, SSD)
with 0 workers on AGX. But this drops to around 300 secs
in epochs 2 and 3 for all 3 storage media.

E. Benefits of caching are not seen when I/O pressure on
the storage medium is low.

We synthetically scale the dataset to 0.25× and 4× of the
original 23k images in order to quantify the imapact of various
dataset sizes. Figs 6 and 7 show the time series plots for IO
Reads and Fetch Stall Time on the Jetson NX. The red vertical
lines indicate epoch boundaries. In Fig. 8a we see that smaller
fractions of the data are cached in memory as the size of the
dataset increases. Consequently, the number of reads going to

disk also increases in epochs 2 and 3 as seen from Figures 6a
to 6c. (Epoch 1 starts with a cold cache, so all reads go to
disk). However, the fetch stalls time for the SSD does not vary
with dataset size as seen from Figs 7a to 7c. This is because
the I/O pressure is low enough that the SSD appears as fast
as the RAM, although it is an order of magnitude slower.
Dataset caching has no impact on the fetch stall time at low I/O
pressure. From Fig. 8c, we can see a perfectly linear increase
in E2E epoch time with increase in dataset size. For example,
in going from 1× to 4× the data, E2E epoch time goes from
600 to 2400 secs (exactly 4×).

F. Corollary: With a slower medium such as the HDD,
benefits of caching are evident.

We repeat the same dataset scaling experiment on the HDD.
Although the fraction of the dataset cached and the read
patterns remain the same (Fig. 8b and Figs. 6d to 6f), the fetch
stalls are different for epoch 1 (disk reads) versus epochs 2 and
3 (disk + cache reads). This can be seen in Fig. 7d, where the
disk fetch stall in the first epoch is around 550 millisecs and
the subsequent epochs see fetch stalls of 300 millisecs (∼ 2×



lower). The benefits of caching are evident in the E2E time
as well. We see from Fig 8d that increasing the dataset size
from 1× to 4× with 0 workers results in E2E time increasing
from 1200 to 5600 secs (4.67×). The overhead is due to many
more reads.

IV. RELATED WORK

A. Benchmarking DNN Training on Server GPUs

MLPerf [19] is a joint effort by the industry and academia
that attempts to provide a uniform framework for quanti-
fying the performance of ML Hardware and Systems. The
Benchmark Suite spans a number of application domains and
datasets, and prescribe a quality threshold that must be met
by any implementation. While such a suite is essential for
measuring the overall impact of systems or optimizations on
training, it does not measure low level system metrics like the
IO reads, caching, etc. MLPerf also lacks a Training suite for
Edge devices.

[5] characterizes the data pipeline and how it affects
training time on Desktop GPUs. It also analyzes the effects of
the OS page cache on data access. However, it only considers
server grade GPUs which are much more powerful and have
more RAM when compared to edge devices.

B. Optimized data access for Deep Learning Training

[5] proposes a modified caching mechanism that minimises
I/O caused by thrashing. Once the page cache is full, all
further accesses are sent to disk without evicting existing
data in the cache. Further, it proposes a partitioned caching
mechanism that benefits distributed training. Quiver [20] pro-
poses a caching strategy based on substitutability. Accesses
that cause a miss in the cache are substituted with other data
that are present in the cache without interfering with training
requirements of randomness and single access per epoch.

C. Edge device characterization

DeepEdgeBench [21] is a DNN Benchmark that compares
the performance of edge devices with respect to model infer-
encing. They report the inference time and power consumption
for MobileNetv2 on edge devices such as Nvidia Jetson Nano,
Google Coral Board and Raspberry Pi 4. Our work focuses on
training instead of inference and also provides detailed insights
into the behaviour of storage mediums on the edge class
devices. Flower [22] is an open source Federated Learning
(FL) framework that supports heterogeneous environments
including mobile and edge devices, and scales to a large
number of distributed clients. Their paper presents the results
of deploying Flower on Android devices in the Amazon AWS
Device Farm and on Nvidia Jetson TX2 edge accelerator.

V. CONCLUSION

In this paper, we have closely examined the system charac-
teristics of ML Model training on Nvidia Jetson Xavier AGX
and Xavier NX platforms. We provide a detailed analysis of
the role the storage subsystem plays in model training on edge
devices. We demonstrated the significance of pipelining and

parallelism in avoiding data fetch stalls. Further, we analysed
the role played by the Linux cache in avoiding fetch stalls on
multiple dataset sizes. As future work, we plan on performing
similar experiments for a broader set of DNN models. The
edge devices also offer several power modes and it would be
interesting to explore the tradeoff between the power budgets
and the training performance. Early experiments show that
using faster and fewer CPU cores (equal to the optimal number
of workers) has performance benefits. Also, initial experiments
show that low power modes offer significant energy savings
at a small performance penalty.
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